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Abstract

In this note we show that the deductive extension of Zermelo set theory depends

on the formulation of the axiom of in�nity. In particular, we prove that the original

version given by Zermelo is not su�cient to prove the existence of the set ! of von

Neumann natural numbers.

Introduction

Whereas in ZF the special formulation of the axiom of in�nity is not important, it

makes a di�erence in absence of the axiom of replacement. Although this fact is not

di�cult to prove, it seems to be widely unknown.

Let Z

0

denote Zermelo set theory without the axiom of in�nity, i.e. the theory given

by the axioms of extensionality, separation, pairing, union, powerset and regularity in

their standard �rst-order formulation, like e.g. given in [1].

We use standard set theoretic terminology and notation. Classes are used as meta-

expressions as usual, and for a class C and formula �, C j= � is an abbreviation for the

relativization of ' to C.

We shall use the well-known fact that bounded formulae (i.e. such that involve only

bounded quanti�ers 8x 2 y, 9x 2 y) are absolute w.r.t. transitive classes; this is to

say that for a bounded formula '(x) and a transitive class C, '(a) $ (C j= '(a)) is

provable for every a 2 C. A proof can be found in any textbook on set theory, e.g. in

[1]. In particular, the axioms of extensionality and regularity are equivalent to bounded

formulae, and are therefore valid in every transitive class.

The axioms of in�nity

Let � denote the set f ; ; f;g ; ff;gg ; : : :g, i.e. the smallest set containing the empty

set and closed under singletons. Let ! be the set of �nite von Neumann ordinals, and

let HF be the set of hereditarily �nite sets. Although the existence of any of these sets

�
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cannot be proved in Z

0

, they can be de�ned as classes in such a way that they have all

desired properties.

The �rst form of the axiom of in�nity we shall consider is simply "there is an in�nite

set", i.e. one in which every element of ! can be injected:

9y 8x (x 2 ! ! x � y)

We shall see that this axiom, which is denoted (inf

1

) in the sequel, does not imply the

existence of any of the sets � ; ! or HF in Z

0

. (inf

2

) is the original version of the axiom

of in�nity given by Zermelo in [4]:

9y (; 2 y ^ 8x (x 2 y ! fxg 2 y))

(inf

3

) is the usual axiom of in�nity as it is found e.g. in [1]:

9y (; 2 y ^ 8x (x 2 y ! s(x) 2 y))

where s(x) denotes x [ fxg. The following stronger axiom (inf

4

) is also sometimes

found:

9y (; 2 y ^ 8x

1

; x

2

(x

1

2 y ^ x

2

2 y ! x

1

[ fx

2

g 2 y))

For i = 1; : : : ; 4, let Z

i

denote the theory Z

0

together with the axiom (inf

i

).

Now in Z

2

the existence of the set � is obviously provable, and the same holds for

Z

3

and !. Furthermore, in either case we can prove the scheme of induction for the

respective set,

Z

2

` '(;) ^ 8x ('(x)! '(fxg))! 8x (x 2 � ! '(x))

and similarly for Z

3

with � replaced by !. Likewise, we can prove the existence of HF

in Z

4

. Thus we can conclude that Z

4

` (inf

i

) for i = 2; 3 since ; 2 HF and HF is

closed under singletons and s.

Now we show that Z

2

` (inf

1

). De�ne a function r on � by

r(;) = ;; r(fxg) = s(r(x));

and for a given n 2 !, de�ne the function f

n

: n! � by

f

n

= f(x; y) 2 n� �; x = r(y)g

Then, since r is injective, f

n

is an injective mapping from n to �.

Finally we have Z

3

` (inf

1

): For n 2 !, the identity mapping id

n

:= f(i; i); i 2 ng

is an injective mapping from n into !.

So we have the following diamond of implications between the axioms of in�nity

w.r.t. Z

0

:
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4

)

(inf

1
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(inf

3

)(inf

2

)

We shall see in the following that none of the arrows can be reversed, and especially

that (inf

2

) and (inf

3

) are incomparable, in contrast to the situation in ZF, where all

four versions are equivalent.

The model constructions

By an inner model of a theory T , we mean a class C such that T ` (C j= ') for every

axiom ' of T . We shall now give two inner models N j= Z

3

and Z j= Z

2

where the sets

� and ! resp. do not exist.

Theorem 1 There is an inner model N of Z

3

such that

N j= :9x x = �

Proof: First we describe the model N informally: Let

N

0

:= !

N

i+1

:=

P

(N

i

)

N :=

[

i<!

N

i

We shall prove in Z

3

that N is indeed a model of Z

3

, and that � =2 N . The class N can

be de�ned by the following formula:

x 2 N :$ 9f ( fun(f) ^ dom(f) 2 ! ^ f(0) = !

^8i 2 ! (s(i) 2 dom(f)! f(s(i)) =

P

(f(i)))^ 9i 2 dom(f) x 2 f(i))

First we shall show that N is transitive: Let a 2 N , then by there is a function f as

required by the de�nition and an i 2 ! such that a 2 f(i). Then either i = ;, then

a 2 !, and since ! is transitive, a � !, or i = s(j) for some j 2 !, then a 2

P

(f(j)),

and thus a � f(j), and in either case a � N .

Since N is a transitive class, N is a model of the axioms of extensionality and

regularity.

Next, N is closed under pairs and unions, and since these notions can be de�ned

by bounded formulae, they are absolute w.r.t.N , so N is a model of the corresponding

axioms.
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To show that N is a model of the axiom scheme of separation means that for every

formula ' and every a 2 N we have to prove

9y 2 N 8x 2 N (x 2 y $ x 2 a ^ N j= '(x))

But if a 2 N

i

, then fx 2 a;N j= '(x)g is a subset of N

i

, and hence an element of

N

i+1

, so we have found an y 2 N that ful�lls the requirement.

Also N is closed under powersets, and a similar argument using the absoluteness

of subsets shows that the powerset axiom is true in N . Finally, ! 2 N , and since it is

absolute, N is a model of (inf

3

).

Now � is not an element of N since

f: : :f

| {z }

i+2

; g : : :g

| {z }

i+2

2 N

i+1

n N

i

and since � can be de�ned by a bounded formula, it is absolute and hence � does not

exist in the model N . 2

Since (inf

4

) implies (inf

2

), N j= :(inf

4

). Therefore neither of these two axioms is a

theorem of Z

3

. Finally, since (inf

3

)! (inf

1

) we have N j= (inf

1

) and thus (inf

1

) does

not imply the existence of the set �.

Theorem 2 There is an inner model Z of Z

2

such that

Z j= :9x x = !

Proof: The model Z is de�ned completely analogous to the model N : We let

Z

0

:= �

Z

i+1

:=

P

(Z

i

)

Z :=

[

i<!

Z

i

Then Z is a model of Z

2

, and ! =2 Z by the same argument as above. The class Z can

be de�ned by the formula

x 2 Z :$ 9f ( fun(f) ^ dom(f) � � ^ trans(dom(f)) ^ f(0) = �

^8i 2 � (fig 2 dom(f)! f(fig) =

P

(f(i)))^ 9i 2 dom(f) x 2 f(i))

Note that a transitive proper subset d of � must be a �nite initial segment of �: if

fxg 2 d, then by transitivity fxg � d, and thus x 2 d. Hence, in order to be a proper

subset of �, d must be �nite.

Since the de�nition of Z mirrors the de�nition of N we can prove the claims of the

theorem just like in the proof of Theorem 1, using induction on � where induction on

! is used there. 2

Again, since (inf

4

) ! (inf

3

), Z

2

does not prove that HF exists. Finally, since

(inf

2

)! (inf

1

), (inf

1

) does not imply the existence of !.
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The axioms of Parlamento and Policriti

In [2, 3] two formulae '

i

(a; b) i = 1; 2 (of the lowest possible logical complexity) are

de�ned such that 9x; y '

i

(x; y) is equivalent to (inf

3

) w.r.t. ZF without the axiom of

in�nity. These are

'

1

(a; b) :$ a 6= b ^ a =2 b ^ b =2 a

^8x 2 a (x � b) ^ 8x 2 b (x � a) ^ 8x 2 a (x =2 b)

^8x; y 2 a 8z; w 2 b (z 2 x ^ x 2 w ^ w 2 y ! z 2 y)

^8x; y 2 b 8z; w 2 a (z 2 x ^ x 2 w ^ w 2 y ! z 2 y)

'

2

(a; b) :$ a 6= ; ^ b 6= ; ^ a =2 b ^ b =2 a

^8x 2 a (x � b) ^ 8x 2 b (x � a)

^8x 2 a 8y 2 b (x 2 y _ y 2 x)

We now want to investigate how these axioms �t into our framework. First we have

that

Z

0

` '

2

(a; b)! '

1

(a; b)

The proof of this fact given in [3] requires only extensionality and regularity.

In [2] it is proved (in ZF), that if '

1

(a; b) holds, then either !

0

� a and !

00

� b or

vice versa, where

!

0

:= ff

i

; i 2 !g and !

00

= fg

i

; i 2 !g

with f

0

:= ;, g

n

:= ff

0

; : : : ; f

n

g and f

n+1

:= fg

0

; : : : ; g

n

g. The proof given there

requires | besides the axioms of Z

0

| some form of induction and can therefore be

carried out in Z

2

or Z

3

. On the other hand, '

2

(!

0

; !

00

) holds, and since these are easily

de�nable subsets of HF , we have immediately:

Z

4

` 9x; y '

2

(x; y)

We shall now show that 9x; y '

1

(x; y) is not provable in Z

2

or Z

3

. Consider the models

we have constructed for these theories. We shall see that the sets !

0

and !

00

are not

elements of N and Z.

A closer inspection of the de�nitions of these sets shows that f(i+1) 2 N

2i+1

nN

2i

and g(i+ 1) 2 N

2i+2

n N

2i+1

. Thus !

0

and !

00

cannot be elements of N . Likewise we

have f(i+ 2) 2 Z

2i+2

n Z

2i+1

and g(i+ 1) 2 Z

2i+1

n Z

2i

. Therefore they are also not

elements of Z .

Instead of directly constructing a model of Z

0

+ 9x; y '

1

(x; y), we shall state the

following general observation that we made while proving this fact.

Let us call a set n-transitive if

8x 2 a 8y 2 x y 2

[

i�n

P

i

(a)
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Thus 0-transitive means transitive in the usual sense.

Theorem 3 Let a be n-transitive for some n 2 !, then M de�ned by

M

0

:= a

M

i+1

:= M

i

[

P

(M

i

)

M :=

[

i<!

M

i

:

is a model of Z

0

.

Proof: M

n

is transitive, for let x 2 M

n

, then either x 2 a, hence x �

S

i�n

P

i

(a), and

thus x �M

n

, or x 2 M

i+1

nM

i

for some i < n, hence x 2

P

(M

i

) and so x �M

i

.

It follows immediately that M is transitive, and hence M is a model of extension-

ality and regularity.

The validity of the remaining axioms is proved similar to the corresponding parts in

the proof of Theorem 1, with some extra care for the elements appearing in the layers

M

i

(i < n) below M

n

. 2

Now a model M of Z

0

+ 9x; y '

1

(x; y) where neither of the sets ! and � exists is

constructed by taking a = !

0

in the previous Theorem, since !

0

is 2-transitive. Then

!

00

2 M

2

, and thus M j= 9x; y '

1

(x; y) . ! =2 M and � =2 M can be seen by the same

method as !

0

=2 N .
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