Tautological axioms in tree-like k-DNF Resolution

Jan Johannsen

February 25, 2022

k-DNF Resolution is a generalization of Resolution introduced by Krajíček [2] in the context of Bounded Arithmetic, which uses *k*-DNF formulas instead of just clauses. Cut-elimination shows that the tree-like versions $Res^*(k)$ of these systems are actually weaker than dag-like Resolution [1], so that they form a hierarchy of proof systems betweeen tree-like and dag-like resolution.

It is well-known that tautological axioms are redundant for resolution refutations. In this note, we will show an analogue for $Res^*(k)$ refutations.

A *literal* is a variable x or a negated variable \bar{x} . A *clause* is a disjunction $C = a_1 \vee \ldots \vee a_k$ of literals a_i , and a *term* is a conjunction $T = a_1 \wedge \ldots \wedge a_k$ of literals a_i . The *width* of a clause C or a term T is k, the number of literals in it. A k-term is a term of width $\ell \leq k$. We do not distinguish between a literal and a term consisting of one literal. Note that the negation \bar{T} of a k-term T is a clause of width k, and vice versa.

A formula in conjunctive normal form (CNF) is a conjunction $F = C_1 \land \ldots \land C_m$ of clauses, and a formula in *disjunctive normal form* (DNF) is a disjunction $F = T_1 \lor \ldots \lor T_m$ of terms. A formula F in DNF is in k-DNF if every term T in F is a k-term.

The proof system of tree-like k-DNF Resolution, $Res^*(k)$ generalizes treelike Resolution by allowing k-DNF formulas instead of just clauses as lines in the proof. The inference rules are (1) conjunction introduction, (2) k-cut and (3) weakening.

(1)
$$\frac{F \vee T_1 \quad G \vee T_2}{F \vee G \vee (T_1 \wedge T_2)}$$
 (2)
$$\frac{F \vee T \quad G \vee \overline{T}}{F \vee G}$$
 (3)
$$\frac{F}{F \vee T}$$

where F and G are k-DNF formulas, T is a k-term and T_1 and T_2 are k-terms such that $T_1 \wedge T_2$ is still a k-term. Note that the resolution rule is a special case of (2) for k = 1.

A $Res^*(k)$ -derivation of a k-DNF formula C from a set of k-DNF formulas F is an ordered binary tree, in which every node v is labeled with a k-DNF formula C_v such that:

1. The root is labeled with C.

- 2. If v an inner node with one predecessor u, then C_v follows from C_u by the weakening rule.
- 3. If v is an inner node with 2 predecessors u_1, u_2 , then C_v follows from C_{u_1} and C_{u_2} by one of the inference rules conjunction introduction or k-cut.
- 4. If v is a leaf, then C_v is a formula from F.

A $Res^*(k)$ -refutation of a CNF formula F is a $Res^*(k)$ -derivation of the empty clause from F. Since the inference rules preserve satisfiability, a $Res^*(k)$ refutation of $Res^*(k)$ -refutation of F shows that F is unsatisfiable. The proof system $Res^*(k)$ is also complete in the sense that a formula F has an $Res^*(k)$ refutation if and only if F is unsatisfiable, which follows from the completeness of tree-like resolution.

Let $Taut_k(F)$ be the set of tautologies $T \vee \overline{T}$ for all k-terms T over the variables of F. In some presentations, the proof system $Res^*(k)$ is defined as having these formulas as additional axioms. We show that they are redundant.

Theorem 1. $F + Taut_k(F)$ has a $Res^*(k)$ refutation of size s iff F has a $Res^*(k)$ refutation of size at most s.

We define a relation between terms in formulas occurring in a $Res^*(k)$ derivation. In a conjunction introduction inference (1), we call the term $T_1 \wedge T_2$ a child of the term T_1 in the left premise as well as of the term T_2 in the right premise. Moreover, each term in $F \vee G$ is a child of the same term appearing in F or in G in the premises. Analogously, in a cut inference (2), each term in $F \vee G$ is a child of the same term appearing in F or in G in the premises, and similarly for a weakening inference (3) and the terms appearing in F. The relation of a term being a descendant of another term in the proof is the transitive closure of this relation of being a child.

Proof. Let $T \vee \overline{T}$ be an axiom from $Taut_k(F)$, where $T = (a_1 \wedge \ldots \wedge a_k)$ is a k-term.

Consider the path from a leaf labelled $T \vee \overline{T}$ to the root. At some point on that path, a cut must be performed on a descendent of T, i.e., there is an inference of $F \vee G$ from $(T \wedge B) \vee F$ and $\overline{T} \vee \overline{B} \vee G$, where $(T \wedge B)$ is the descendent of T with $B = T_1 \wedge \ldots \wedge T_m$, the terms T_j being added to B in that order.

Let this path be labelled with the formulas F_1, \ldots, F_n in that order, where $F_1 = T \vee \overline{T}$ and $F_n = (T \wedge B) \vee F$. Each line F_i is of the following form:

$$F_i = (T \wedge B_i) \vee A_1^{(i)} \vee \ldots \vee A_{\ell_i}^{(i)} \vee F_i'$$

where $(T \wedge B_i)$ is a descendent of T with $B_i = T_1 \wedge \ldots \wedge T_{j_i}$, the terms A_j are descendents of the literals \bar{a}_j in F_1 , and F'_i are all the remaining terms in F_i .

Now we replace each line F_i by the following line

$$F_i^* = B_i' \lor A_1^{(i)} \lor \ldots \lor A_{\ell_i}^{(i)} \lor F_i' \lor G$$

where $B'_i = \overline{T}_{j_i+1} \vee \ldots \vee \overline{T}_m$.

For every i < n, the formula F_{i+1} is derived from F_i by one of the following inferences:

- 1. a weakening, adding a term S to F'_i so that $F'_{i+1} = F'_i \lor S$,
- 2. a cut, which can only affect one or more terms in F'_i , or some of the terms A^i_j ,
- 3. an \wedge -introduction increasing some term in F'_i or one of the terms A^i_i ,
- 4. an \wedge -introduction adding a term T_{j_i+1} to B_i , where the second premise is $H \vee T_{j_i+1}$, so that $j_{i+1} = j_i + 1$, and $F'_{i+1} = F'_i \vee H$.

In the first case, the line F^{\ast}_{i+1} is obtained from F^{\ast}_{i} by the same weakening inference.

In cases 2 and 3, the formula F_{i+1}^* is similarly obtained from F_i^* by the same inference, using the same second premise which is obtained by the same derivation as in the original proof.

In the last case, we obtain F_{i+1}^* from F_i^* by a cut on T_{j_i+1} with the same second premise $H \vee T_{j_i+1}$, which is derived by the same derivation.

Note that the first line F_1^* is $\overline{T} \vee \overline{B} \vee G$, for which we can use its original derivation, and that the last line F_m^* is $F \vee G$. Thus we have derived the conclusion $F \vee G$ by a smaller derivation, and we have eliminated this use of the axiom $T \vee \overline{T}$. Inductively, we can eliminate all uses of axioms from $Taut_k(F)$. \Box

References

- Juan Luis Esteban, Nicola Galesi, and Jochen Messner. On the complexity of resolution with bounded conjunctions. *Theoretical Computer Science*, 321(2-3):347–370, August 2004. Preliminary version in *ICALP '02*.
- [2] Jan Krajíček. On the weak pigeonhole principle. Fundamenta Mathematicae, 170(1-2):123-140, 2001.