Tautological axioms in tree-like k-DNF Resolution

Jan Johannsen

February 25, 2022
k-DNF Resolution is a generalization of Resolution introduced by Krajíček [2] in the context of Bounded Arithmetic, which uses k-DNF formulas instead of just clauses. Cut-elimination shows that the tree-like versions $\operatorname{Res}^{*}(k)$ of these systems are actually weaker than dag-like Resolution [1], so that they form a hierarchy of proof systems betweeen tree-like and dag-like resolution.

It is well-known that tautological axioms are redundant for resolution refutations. In this note, we will show an analogue for $\operatorname{Res}^{*}(k)$ refutations.

A literal is a variable x or a negated variable \bar{x}. A clause is a disjunction $C=a_{1} \vee \ldots \vee a_{k}$ of literals a_{i}, and a term is a conjunction $T=a_{1} \wedge \ldots \wedge a_{k}$ of literals a_{i}. The width of a clause C or a term T is k, the number of literals in it. A k-term is a term of width $\ell \leq k$. We do not distinguish between a literal and a term consisting of one literal. Note that the negation \bar{T} of a k-term T is a clause of width k, and vice versa.

A formula in conjunctive normal form (CNF) is a conjunction $F=C_{1} \wedge \ldots \wedge$ C_{m} of clauses, and a formula in disjunctive normal form (DNF) is a disjunction $F=T_{1} \vee \ldots \vee T_{m}$ of terms. A formula F in DNF is in k-DNF if every term T in F is a k-term.

The proof system of tree-like k-DNF Resolution, $\operatorname{Res}^{*}(k)$ generalizes treelike Resolution by allowing k-DNF formulas instead of just clauses as lines in the proof. The inference rules are (1) conjunction introduction, (2) k-cut and (3) weakening.
(1) $\frac{F \vee T_{1} \quad G \vee T_{2}}{F \vee G \vee\left(T_{1} \wedge T_{2}\right)}$
(2) $\frac{F \vee T \quad G \vee \bar{T}}{F \vee G}$
(3) $\frac{F}{F \vee T}$
where F and G are k-DNF formulas, T is a k-term and T_{1} and T_{2} are k-terms such that $T_{1} \wedge T_{2}$ is still a k-term. Note that the resolution rule is a special case of (2) for $k=1$.

A $\operatorname{Res} s^{*}(k)$-derivation of a k-DNF formula C from a set of k-DNF formulas F is an ordered binary tree, in which every node v is labeled with a k-DNF formula C_{v} such that:

1. The root is labeled with C.
2. If v an inner node with one predecessor u, then C_{v} follows from C_{u} by the weakening rule.
3. If v is an inner node with 2 predecessors u_{1}, u_{2}, then C_{v} follows from $C_{u_{1}}$ and $C_{u_{2}}$ by one of the inference rules conjunction introduction or k-cut.
4. If v is a leaf, then C_{v} is a formula from F.

A $\operatorname{Res}^{*}(k)$-refutation of a $C N F$ formula F is a $\operatorname{Res}^{*}(k)$-derivation of the empty clause from F. Since the inference rules preserve satisfiability, a $\operatorname{Res}^{*}(k)$ refutation of Res* (k)-refutation of F shows that F is unsatisfiable. The proof system $\operatorname{Res}^{*}(k)$ is also complete in the sense that a formula F has an $\operatorname{Res}^{*}(k)$ refutation if and only if F is unsatisfiable, which follows from the completeness of tree-like resolution.

Let $\operatorname{Taut}_{k}(F)$ be the set of tautologies $T \vee \bar{T}$ for all k-terms T over the variables of F. In some presentations, the proof system $\operatorname{Res}^{*}(k)$ is defined as having these formulas as additional axioms. We show that they are redundant.

Theorem 1. $F+$ Taut $_{k}(F)$ has a Res* (k) refutation of size s iff F has a Res* (k) refutation of size at most s.

We define a relation between terms in formulas occurring in a $\operatorname{Res}^{*}(k)$ derivation. In a conjunction introduction inference (1), we call the term $T_{1} \wedge T_{2}$ a child of the term T_{1} in the left premise as well as of the term T_{2} in the right premise. Moreover, each term in $F \vee G$ is a child of the same term appearing in F or in G in the premises. Analogously, in a cut inference (2), each term in $F \vee G$ is a child of the same term appearing in F or in G in the premises, and similarly for a weakening inference (3) and the terms appearing in F. The relation of a term being a descendant of another term in the proof is the transitive closure of this relation of being a child.

Proof. Let $T \vee \bar{T}$ be an axiom from $\operatorname{Taut}_{k}(F)$, where $T=\left(a_{1} \wedge \ldots \wedge a_{k}\right)$ is a k-term.

Consider the path from a leaf labelled $T \vee \bar{T}$ to the root. At some point on that path, a cut must be performed on a descendent of T, i.e., there is an inference of $F \vee G$ from $(T \wedge B) \vee F$ and $\bar{T} \vee \bar{B} \vee G$, where $(T \wedge B)$ is the descendent of T with $B=T_{1} \wedge \ldots \wedge T_{m}$, the terms T_{j} being added to B in that order.

Let this path be labelled with the formulas F_{1}, \ldots, F_{n} in that order, where $F_{1}=T \vee \bar{T}$ and $F_{n}=(T \wedge B) \vee F$. Each line F_{i} is of the following form:

$$
F_{i}=\left(T \wedge B_{i}\right) \vee A_{1}^{(i)} \vee \ldots \vee A_{\ell_{i}}^{(i)} \vee F_{i}^{\prime}
$$

where $\left(T \wedge B_{i}\right)$ is a descendent of T with $B_{i}=T_{1} \wedge \ldots \wedge T_{j_{i}}$, the terms A_{j} are descendents of the literals \bar{a}_{j} in F_{1}, and F_{i}^{\prime} are all the remaining terms in F_{i}.

Now we replace each line F_{i} by the following line

$$
F_{i}^{*}=B_{i}^{\prime} \vee A_{1}^{(i)} \vee \ldots \vee A_{\ell_{i}}^{(i)} \vee F_{i}^{\prime} \vee G
$$

where $B_{i}^{\prime}=\bar{T}_{j_{i}+1} \vee \ldots \vee \bar{T}_{m}$.

For every $i<n$, the formula F_{i+1} is derived from F_{i} by one of the following inferences:

1. a weakening, adding a term S to F_{i}^{\prime} so that $F_{i+1}^{\prime}=F_{i}^{\prime} \vee S$,
2. a cut, which can only affect one or more terms in F_{i}^{\prime}, or some of the terms A_{j}^{i},
3. an \wedge-introduction increasing some term in F_{i}^{\prime} or one of the terms A_{j}^{i},
4. an \wedge-introduction adding a term $T_{j_{i}+1}$ to B_{i}, where the second premise is $H \vee T_{j_{i}+1}$, so that $j_{i+1}=j_{i}+1$, and $F_{i+1}^{\prime}=F_{i}^{\prime} \vee H$.

In the first case, the line F_{i+1}^{*} is obtained from F_{i}^{*} by the same weakening inference.

In cases 2 and 3, the formula F_{i+1}^{*} is similarly obtained from F_{i}^{*} by the same inference, using the same second premise which is obtained by the same derivation as in the original proof.

In the last case, we obtain F_{i+1}^{*} from F_{i}^{*} by a cut on $\bar{T}_{j_{i}+1}$ with the same second premise $H \vee T_{j_{i}+1}$, which is derived by the same derivation.

Note that the first line F_{1}^{*} is $\bar{T} \vee \bar{B} \vee G$, for which we can use its original derivation, and that the last line F_{m}^{*} is $F \vee G$. Thus we have derived the conclusion $F \vee G$ by a smaller derivation, and we have eliminated this use of the axiom $T \vee \bar{T}$. Inductively, we can eliminate all uses of axioms from $\operatorname{Taut}_{k}(F)$.

References

[1] Juan Luis Esteban, Nicola Galesi, and Jochen Messner. On the complexity of resolution with bounded conjunctions. Theoretical Computer Science, 321(2-3):347-370, August 2004. Preliminary version in ICALP '02.
[2] Jan Krajíček. On the weak pigeonhole principle. Fundamenta Mathematicae, 170(1-2):123-140, 2001

