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k-DNF Resolution is a generalization of Resolution introduced by Kraj́ıček
[2] in the context of Bounded Arithmetic, which uses k-DNF formulas instead of
just clauses. Cut-elimination shows that the tree-like versions Res∗(k) of these
systems are actually weaker than dag-like Resolution [1], so that they form a
hierarchy of proof systems betweeen tree-like and dag-like resolution.

It is well-known that tautological axioms are redundant for resolution refu-
tations. In this note, we will show an analogue for Res∗(k) refutations.

A literal is a variable x or a negated variable x̄. A clause is a disjunction
C = a1 ∨ . . . ∨ ak of literals ai, and a term is a conjunction T = a1 ∧ . . . ∧ ak of
literals ai. The width of a clause C or a term T is k, the number of literals in
it. A k-term is a term of width ` ≤ k. We do not distinguish between a literal
and a term consisting of one literal. Note that the negation T̄ of a k-term T is
a clause of width k, and vice versa.

A formula in conjunctive normal form (CNF) is a conjunction F = C1 ∧ . . .∧
Cm of clauses, and a formula in disjunctive normal form (DNF) is a disjunction
F = T1 ∨ . . . ∨ Tm of terms. A formula F in DNF is in k-DNF if every term T
in F is a k-term.

The proof system of tree-like k-DNF Resolution, Res∗(k) generalizes tree-
like Resolution by allowing k-DNF formulas instead of just clauses as lines in
the proof. The inference rules are (1) conjunction introduction, (2) k-cut and
(3) weakening.

(1)
F ∨ T1 G ∨ T2

F ∨G ∨ (T1 ∧ T2)
(2)

F ∨ T G ∨ T̄

F ∨G
(3)

F

F ∨ T

where F and G are k-DNF formulas, T is a k-term and T1 and T2 are k-terms
such that T1 ∧T2 is still a k-term. Note that the resolution rule is a special case
of (2) for k = 1.

A Res∗(k)-derivation of a k-DNF formula C from a set of k-DNF formulas
F is an ordered binary tree, in which every node v is labeled with a k-DNF
formula Cv such that:

1. The root is labeled with C.
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2. If v an inner node with one predecessor u, then Cv follows from Cu by the
weakening rule.

3. If v is an inner node with 2 predecessors u1, u2, then Cv follows from Cu1

and Cu2 by one of the inference rules conjunction introduction or k-cut.

4. If v is a leaf, then Cv is a formula from F .

A Res∗(k)-refutation of a CNF formula F is a Res∗(k)-derivation of the empty
clause from F . Since the inference rules preserve satisfiability, a Res∗(k)-
refutation of Res∗(k)-refutation of F shows that F is unsatisfiable. The proof
system Res∗(k) is also complete in the sense that a formula F has an Res∗(k)-
refutation if and only if F is unsatisfiable, which follows from the completeness
of tree-like resolution.

Let Tautk(F ) be the set of tautologies T ∨ T̄ for all k-terms T over the
variables of F . In some presentations, the proof system Res∗(k) is defined as
having these formulas as additional axioms. We show that they are redundant.

Theorem 1. F + Tautk(F ) has a Res∗(k) refutation of size s iff F has a
Res∗(k) refutation of size at most s.

We define a relation between terms in formulas occurring in a Res∗(k)-
derivation. In a conjunction introduction inference (1), we call the term T1 ∧T2

a child of the term T1 in the left premise as well as of the term T2 in the right
premise. Moreover, each term in F ∨G is a child of the same term appearing in
F or in G in the premises. Analogously, in a cut inference (2), each term in F ∨G
is a child of the same term appearing in F or in G in the premises, and similarly
for a weakening inference (3) and the terms appearing in F . The relation of a
term being a descendant of another term in the proof is the transitive closure
of this relation of being a child.

Proof. Let T ∨ T̄ be an axiom from Tautk(F ), where T = (a1 ∧ . . . ∧ ak) is a
k-term.

Consider the path from a leaf labelled T ∨ T̄ to the root. At some point
on that path, a cut must be performed on a descendent of T , i.e., there is an
inference of F ∨G from (T ∧B)∨F and T̄ ∨B̄∨G, where (T ∧B) is the descendent
of T with B = T1 ∧ . . . ∧ Tm, the terms Tj being added to B in that order.

Let this path be labelled with the formulas F1, . . . , Fn in that order, where
F1 = T ∨ T̄ and Fn = (T ∧B) ∨ F . Each line Fi is of the following form:

Fi = (T ∧Bi) ∨A
(i)
1 ∨ . . . ∨A

(i)
`i
∨ F ′i

where (T ∧ Bi) is a descendent of T with Bi = T1 ∧ . . . ∧ Tji , the terms Aj are
descendents of the literals āj in F1, and F ′i are all the remaining terms in Fi.

Now we replace each line Fi by the following line

F ∗i = B′i ∨A
(i)
1 ∨ . . . ∨A

(i)
`i
∨ F ′i ∨G

where B′i = T̄ji+1 ∨ . . . ∨ T̄m.
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For every i < n, the formula Fi+1 is derived from Fi by one of the following
inferences:

1. a weakening, adding a term S to F ′i so that F ′i+1 = F ′i ∨ S,

2. a cut, which can only affect one or more terms in F ′i , or some of the terms
Ai

j ,

3. an ∧-introduction increasing some term in F ′i or one of the terms Ai
j ,

4. an ∧-introduction adding a term Tji+1 to Bi, where the second premise is
H ∨ Tji+1, so that ji+1 = ji + 1, and F ′i+1 = F ′i ∨H.

In the first case, the line F ∗i+1 is obtained from F ∗i by the same weakening
inference.

In cases 2 and 3, the formula F ∗i+1 is similarly obtained from F ∗i by the
same inference, using the same second premise which is obtained by the same
derivation as in the original proof.

In the last case, we obtain F ∗i+1 from F ∗i by a cut on T̄ji+1 with the same
second premise H ∨ Tji+1, which is derived by the same derivation.

Note that the first line F ∗1 is T̄ ∨ B̄ ∨ G, for which we can use its original
derivation, and that the last line F ∗m is F ∨ G. Thus we have derived the
conclusion F ∨G by a smaller derivation, and we have eliminated this use of the
axiom T ∨T̄ . Inductively, we can eliminate all uses of axioms from Tautk(F ).
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