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Preliminary Notes

Proof systems form a lattice

Propositional Proof systems form a lattice under p-simulation. Namely, the
infimum of two proof systems F' and G is the proof system H where a proof
of p in H is a pair consisting of two proofs of ¢, one in F' and G each. More
formally, let F' 11 G be the function

FAGi=pd ? ifp= (PlapQ) and F(p1) = G(p2) = ¢
1 otherwise

Then it is easily seen that MG <, Fand FN G <, G, and every proof
system H with H <, F and H <, G is p-simulated by FNG, H <, F1G.

Similarly, the supremum of F' and G is the proof system where a proof is
either a proof in F' or a proof in GG, together with a marker which of both it
is, formally

o ifp=(i,p') fori=0,1and F;(p’) = ¢

FoUF :=p— { 1 otherwise

It is again easily seen that FF <, FUG, G <, FUG and F UG <, H for
each proof system H that p-simulates F' and G.

Some examples and conjectures

From [4] we know that C'P and constant-depth Frege proofs (F;) are incom-
patible w.r.t. p-simulation. Hence the question arises whether the infimum
and supremum of these proof systems could be p-equivalent to some natural
proof systems.

Now resolution is a lower bound for C' P Fy, but it is properly weaker: The
weak pigeonhole principle PH P2" has quasipolynomial size F,; proofs, and



its negation has polynomial size C'P refutations. Hence it has quasipolyno-
mial size proofs in C' P11 Fy, whereas resolution refutations of =PH P?" have
to be of exponential size.

An upper bound for the CP U F,; are constant depth proofs in PTK of [2].
We conjecture that this is not the least upper bound. To prove that, we
have to find a family of tautologies having polynomial size, constant depth

proofs in PT K, and give superpolynomial lower bounds for proofs of them
in CP and Fjy.

By the results of [3, 1], another pair of incomparable proof systems are dag-
like Resolution (R) and tree-like Cutting Planes (C'Py..). Obvious upper
and lower bounds for their infimum and supremum are

Rypee <p Rdag M CPyee and Rdag M C Pipee <p CPdag -

But we conjecture that both are not optimal, i.e.

e there are sets of clauses that have polynomial size dag-like resolution
refutations as well as tree-like C'P refutation, but a superpolynomial
lower bound for tree-like resolution, and

e there are sets of clauses that have polynomial size dag-like C'P refu-
tations, but superpolynomial lower bounds for dag-like resolution as
well as tree-like C'P.
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