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Preliminary Notes

Proof systems form a lattie

Propositional Proof systems form a lattie under p-simulation. Namely, the

in�mum of two proof systems F and G is the proof system H where a proof

of ' in H is a pair onsisting of two proofs of ', one in F and G eah. More

formally, let F uG be the funtion

F uG := p 7!

�

' if p = (p

1

; p

2

) and F (p

1

) = G(p

2

) = '

1 otherwise

:

Then it is easily seen that F u G �

p

F and F u G �

p

G, and every proof

system H with H �

p

F and H �

p

G is p-simulated by F uG, H �

p

F uG.

Similarly, the supremum of F and G is the proof system where a proof is

either a proof in F or a proof in G, together with a marker whih of both it

is, formally

F

0

t F

1

:= p 7!

�

' if p = (i; p

0

) for i = 0; 1 and F

i

(p

0

) = '

1 otherwise

:

It is again easily seen that F �

p

F t G, G �

p

F t G and F t G �

p

H for

eah proof system H that p-simulates F and G.

Some examples and onjetures

From [4℄ we know that CP and onstant-depth Frege proofs (F

d

) are inom-

patible w.r.t. p-simulation. Hene the question arises whether the in�mum

and supremum of these proof systems ould be p-equivalent to some natural

proof systems.

Now resolution is a lower bound for CP uF

d

, but it is properly weaker: The

weak pigeonhole priniple PHP

2n

n

has quasipolynomial size F

d

proofs, and

1



its negation has polynomial size CP refutations. Hene it has quasipolyno-

mial size proofs in CP uF

d

, whereas resolution refutations of :PHP

2n

n

have

to be of exponential size.

An upper bound for the CP t F

d

are onstant depth proofs in PTK of [2℄.

We onjeture that this is not the least upper bound. To prove that, we

have to �nd a family of tautologies having polynomial size, onstant depth

proofs in PTK, and give superpolynomial lower bounds for proofs of them

in CP and F

d

.

By the results of [3, 1℄, another pair of inomparable proof systems are dag-

like Resolution (R) and tree-like Cutting Planes (CP

tree

). Obvious upper

and lower bounds for their in�mum and supremum are

R

tree

�

p

R

dag

uCP

tree

and R

dag

u CP

tree

�

p

CP

dag

:

But we onjeture that both are not optimal, i.e.

� there are sets of lauses that have polynomial size dag-like resolution

refutations as well as tree-like CP refutation, but a superpolynomial

lower bound for tree-like resolution, and

� there are sets of lauses that have polynomial size dag-like CP refu-

tations, but superpolynomial lower bounds for dag-like resolution as

well as tree-like CP .
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