Elements Definable by Nonstandard Σ_n -Formulae in Models of Peano Arithmetic

Jan Johannsen Universität Erlangen-Nürnberg IMMD 1, Martensstraße 3, D-91058 Erlangen Tel.: +49 9131 857928 email: johannsen@informatik.uni-erlangen.de

August 4, 1995

Let $M \models PA$ be nonstandard, and I a proper cut in M. We assume a Gödel-numbering of syntax and semantics as in Chapter 9 of [2] and use the notation of this book, but unlike Kaye we do not distinguish between formulae and elements $a \in M$ satisfying form(a). λ denotes the (code of the) empty sequence, and a * b the sequence that results from appending the number b to the sequence a.

Throughout we assume that I is *closed*, i.e. if φ and ψ are formulae in Iand x is a variable in I, then $\varphi \land \psi$, $\varphi \lor \psi$, $\neg \varphi$, $\exists x \varphi$ and $\forall x \varphi$ are also in I. In most places, we would only need a weaker condition, namely that I is closed under \land , \lor and existential quantification for Σ_n -formulae, but for a natural Gödel-numbering the two notions coincide.

A satisfaction class on M is a subset $S \subseteq M \times M$ such that if $(\varphi, a) \in S$, then $M \models form(\varphi)$ and a is a sequence of elements of M whichs length is at least the (possibly nonstandard) number of free variables in φ , and the model M expanded by S satisfies the Tarskian truth conditions formulated in the language of PA with a binary relation symbol S, based on a truth definition for atomic formulas (cf. [2, Ch. 15] or [3]).

On every model M there exists the standard satisfaction class S_0 , the set of pairs (φ, \bar{a}) where φ is a standard formula and $M \models \varphi(\bar{a})$.

For $n \geq 1$, we define the set $K_I^n(M, S)$ of those elements in M which are definable by (non-standard) Σ_n -formulae in I using the satisfaction class S by

$$\begin{split} K_I^n(M,S) &:= \Big\{ \, b \in M \ ; \ \exists \varphi \in I \ \exists a \in I \\ (M,S) &\models form_{\sum_n}(\varphi) \wedge S(\varphi,a*b) \wedge \forall x \ S(\varphi,a*x) \to x = b \ \Big\} \; . \end{split}$$

At first glance, it might seem superfluous to work with satisfaction classes when dealing with Σ_n -formulae only, since there is a definable satisfaction relation $Sat_{\Sigma_n}(\varphi, a)$ for such formulae. Nevertheless, when using this definition, every nonstandard Σ_n -formula gets a fixed value for each assignment, so we lose a possibility of variation. That such possibility exists shows the following

Proposition 1 There is a countable model $M \models PA$, $a \varphi \in M$ such that $M \models form_{\Delta_0}(\varphi)$ and satisfaction classes S_1 , S_2 on M such that $(M, S_1) \models S(\varphi, \lambda)$ and $(M, S_2) \models \neg S(\varphi, \lambda)$.

Proof: Let M be such that there is a full, Δ_0 -inductive satisfaction class S_1 on M. Let furthermore $\varphi :\equiv \bigwedge_{i < a} 0 = 0$ for some $\mathbb{N} < a \in M$. Then since S_1 is Δ_0 -inductive, $(M, S_1) \models S(\varphi, \lambda)$.

On the other hand, since by fullness of S_1 , M must be recursively saturated, the construction of [2, Thm. 15.6] yields another (so-called weakly- \wedge -pathological) satisfaction class S_2 with $(M, S_2) \models S(\neg \varphi, \lambda)$.

A satisfaction class S is called $\Sigma_n(I)$ -full if for every Σ_n -formula φ in I and every valuation $a \in I$ (i.e. a sequence of elements of I of suitable length) either $S(\varphi, a)$ or $S(\neg \varphi, a)$ holds in (M, S).

Theorem 2 If S is $\Sigma_n(I)$ -full, then $K_I^n(M, S) \prec_{\Sigma_n} M$.

Proof: First it is obvious that $K_I^n(M, S)$ is a substructure of M if the conditions of the theorem are fulfilled.

It suffices to show the following: If $\bar{b} \in K_I^n(M, S)$ and $\varphi(x, \bar{y})$ is a Π_{n-1} formula such that $M \models \exists x \, \varphi(x, \bar{b})$, then there is a $c \in K_I^n(M, S)$ such that $M \models \varphi(c, \bar{b})$. By induction, there is a unique $c \in M$ such that

$$M \models \varphi(c, \overline{b}) \land \forall x < c \neg \varphi(x, \overline{b}) .$$

We only have to show that $c \in K_I^n(M, S)$. Let the parameters $\overline{b} = b_1, \ldots, b_k$ be defined by nonstandard Σ_n -formula β_1, \ldots, β_k in I with free variables \overline{y}, x and a sequence of parameters $\overline{a} \in I$, i.e. for each $i \leq k$

$$(M, S) \models S(\beta_i, \bar{a} * b_i) \land \forall x \ S(\beta_i, \bar{a} * x) \to x = b_i$$
.

By collection, $\forall x < z \neg \varphi(x, b)$ is equivalent in M to a Σ_{n-1} -formula $\psi(z, \bar{v})$. Now let

$$\eta:\equiv \exists ar{v} \ eta_1(ar{y},v_1) \land \ldots \land eta_k(ar{y},v_k) \land arphi(z,ar{v}) \land \psi(z,ar{v})$$

then since I is closed, η is a Σ_n -formula in I, and since furthermore S is $\Sigma_n(I)$ -full, we have that

$$(M,S) \models S(\eta, \bar{a} * c) \land \forall x \ S(\eta, \bar{a} * x) \to x = c$$

by the properties of a satisfaction class and the fact that $k \in \mathbb{N}$ and φ and ψ are standard formulae.

From the Theorem we immediately get the following

Corollary 3 If S is $\Sigma_n(I)$ -full, then $K_I^n(M, S) \models I\Sigma_{n-1}$.

Let Sat_{Σ_n} be a natural truth definition for Σ_n -formulae. Then we say that a satisfaction class S on M is $\Sigma_n(I)$ -compatible, if for every Σ_n -formula in I, and every valuation $a \in I$

$$(M, S) \models S(\varphi, a) \leftrightarrow Sat_{\Sigma_n}(\varphi, a)$$
.

Recall that the formula Sat_{Σ_n} is equivalent to a Σ_n -formula in PA.

Theorem 4 If S is $\Sigma_n(I)$ -full and $\Sigma_n(I)$ -compatible and $I \notin K_I^n(M, S)$, then $K_I^n(M, S) \notin B\Sigma_n$.

Proof: Let $b \in K_I^n(M, S)$, then there is a Σ_n -formula $\varphi \in I$ and a sequence of parameters $a \in I$ such that $(M, S) \models S(\varphi, a * b) \land \forall x (S(\varphi, a * x) \to x = b)$. Consider the standard formula

$$\eta(b,w) := \exists \varphi, a \ (w = \langle \varphi, a \rangle \land Sat_{\Sigma_n}(\varphi, a * b)) ,$$

which is equivalent to a Σ_n -formula in M, and let $c \in K_I^n(M, S) \setminus I$, which is non-empty by assumption. Since I is closed, the pair $\langle \varphi, a \rangle$ is in I, and thus

$$M \models \exists w < c \ \eta(b, w)$$

by S being $\Sigma_n(I)$ -compatible. But this formula is Σ_n , hence by Thm. 2 we have

$$K_I^n(M,S) \models \forall b \leq c \exists w < c \eta(b,w)$$

since $b \in K_I^n(M, S)$ was arbitrary. Now suppose $K_I^n(M, S) \models B\Sigma_n$, then the last sentence would be equivalent in $K_I^n(M, S)$ to a Σ_n -formula, and hence by Thm. 2 again, M would also satisfy $\forall b \leq c \exists w < c \eta(b, w)$. On the other hand,

$$M \models \eta(b_1, w) \land \eta(b_2, w) \rightarrow b_1 = b_2$$

for suppose M satisfies $\eta(b_1, w)$ and $\eta(b_2, w)$ for $w = \langle \varphi, a \rangle$, then we would have by $\Sigma_n(I)$ -compatibility $S(\varphi, a * b_1)$ and $S(\varphi, a * b_2)$ both hold in (M, S), hence $b_1 = b_2$.

But then $\eta(b, w)$ would define a 1 - 1 map from c + 1 to c in M, and so the pigeonhole principle in M (cf. [1]) would be violated.

Observe that we can easily find a model $M \models PA$, $I \subseteq_e M$ and a $\Sigma_n(I)$ -full and $\Sigma_n(I)$ -compatible satisfaction class S on M such that I and $K^n(M) = K^n_{\mathbb{N}}(M, S_0)$ are both properly contained in $K^n_I(M, S)$:

Let M be such that $K^n(M)$ is nonstandard, then $K^n(M)$ is not an initial segment of M, since a Σ_n -elementary initial segment of a model of PAsatisfies $B\Sigma_{n+1}$. Let I be the initial segment generated by $K^n(M)$, i.e.

$$I := \{ a \in M ; \exists b \in K^{n}(M) \ a < b \} .$$

Then if $n \geq 2$, I is closed since $I \models I \Sigma_{n-1}$. In the case n = 1, replace I by the smallest initial segment containing $K^n(M)$ that is closed under exponentiation.

Define a satisfaction class

$$S := \{ (\varphi, a) ; \varphi \in I \text{ and } M \models Sat_{\Sigma_n}(\varphi, a) \} ,$$

which has the desired properties simply by definition.

Then obviously $K^n(M) \subsetneqq K^n_I(M, S)$, since $K^n(M) \gneqq I$. On the other hand, the above results imply that $I \gneqq K^n_I(M, S)$, since $K^n_I(M, S)$ cannot be an initial segment of M.

Acknowledgement: I like to thank Roman Murawski for invoking my interest in satisfaction classes, and for some discussion about the contents of this paper.

References

- C. Dimitracopoulos and J. B. Paris. The pigeonhole principle and fragments of arithmetic. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 32:73-80, 1986.
- [2] R. Kaye. Models of Peano Arithmetic. Clarendon Press, Oxford, 1991.
- [3] R. Murawski. Pointwise definable substructures of models of Peano arithmetic. Notre Dame Journal of Formal Logic, 29:295–308, 1988.