On Threshold Logic and Cutting Planes Proofs

Peter Clote Jan Johannsen

December 14, 1998

Yet Another Formulation of Propositional Threshold Logic

Let $P T K^{*}$ be defined like $P T K$ in $[1,2]$, but with the rule T_{k}^{n}-right replaced by the two rules

$$
\begin{gathered}
T_{k}^{n} \text {-right1 }: \frac{\Gamma \Longrightarrow A_{1}, \Delta \quad \Gamma \Longrightarrow T_{k-1}^{n-1}\left(A_{2}, \ldots, A_{n}\right), \Delta}{\Gamma \Longrightarrow T_{k}^{n}\left(A_{1}, \ldots, A_{n}\right), \Delta} \\
T_{k}^{n} \text {-right2 }: \frac{\Gamma \Longrightarrow T_{k}^{n-1}\left(A_{2}, \ldots, A_{n}\right), \Delta}{\Gamma \Longrightarrow T_{k}^{n}\left(A_{1}, \ldots, A_{n}\right), \Delta}
\end{gathered}
$$

and T_{k}^{n}-left replaced by the two dual rules

$$
\begin{gathered}
T_{k}^{n} \text {-left1 }: \frac{A_{1}, \Gamma \Longrightarrow \Delta \quad T_{k}^{n-1}\left(A_{2}, \ldots, A_{n}\right), \Gamma \Longrightarrow \Delta}{T_{k}^{n}\left(A_{1}, \ldots, A_{n}\right), \Gamma \Longrightarrow \Delta} \\
T_{k}^{n} \text {-left2 }: \frac{T_{k-1}^{n-1}\left(A_{2}, \ldots, A_{n}\right), \Gamma \Longrightarrow \Delta}{T_{k}^{n}\left(A_{1}, \ldots, A_{n}\right), \Gamma \Longrightarrow \Delta} .
\end{gathered}
$$

The correctness of $P T K^{*}$ is obvious, and the completeness follows from Theorem 1 below and the completeness of PTK. In the following, we show that $P T K$ and $P T K^{*}$ are polynomially equivalent, and that the mutual simulations also respect the depth of proofs. This was claimed without proof in [3], where $P T K^{*}$ was first defined.
Theorem 1. If P is a proof in PTK, then there is a proof P^{\prime} in $P T K^{*}$ of the same end-sequent. The size of P^{\prime} is linear in the size of P, and the formula depths of P and P^{\prime} are the same.

Proof. Each application of the rule T_{k}^{n}-right is replaced by a subproof that is built as follows: From the second premise we get by weakening the sequent

$$
\Gamma \Longrightarrow T_{k-1}^{n-1}\left(A_{2}, \ldots, A_{n}\right), T_{k}^{n-1}\left(A_{2}, \ldots, A_{n}\right), \Delta
$$

and from this and the first premise we get by an application of T_{k}^{n}-right1

$$
\Gamma \Longrightarrow T_{k}^{n}\left(A_{1}, \ldots, A_{n}\right), T_{k}^{n-1}\left(A_{2}, \ldots, A_{n}\right), \Delta
$$

From this sequent we obtain the conclusion by structural inferences and T_{k}^{n} right2. Likewise, each application of T_{k}^{n}-left is replaced by a similar, dual subproof. The size and depth bounds are obvious.

Theorem 2. If P is a proof in $P T K^{*}$, then there is a proof P^{\prime} in PTK of the same end-sequent. The size of P^{\prime} is polynomial in the size of P, and the formula depths of P and P^{\prime} are the same.

Proof. First, each application of the rule T_{k}^{n}-right1 can be simulated by T_{k}^{n}-right of PTK preceded by a weakening, and likewise T_{k}^{n}-left1 can be simulated using weakening and T_{k}^{n}-left.
In [2] it was noted that the sequents

$$
\begin{equation*}
T_{\ell}^{m}\left(A_{1}, \ldots, A_{m}\right) \Longrightarrow T_{\ell-1}^{m}\left(A_{1}, \ldots, A_{m}\right) \tag{*}
\end{equation*}
$$

have proofs in PTK of size polynomial in m. Using these, we can replace each application of T_{k}^{n}-right2 by a subproof constructed as follows: From the premise of T_{k}^{n}-right 2 and an instance of $(*)$ we obtain

$$
\Gamma \Longrightarrow T_{k-1}^{n-1}\left(A_{2}, \ldots, A_{n}\right), \Delta
$$

by a cut, and again from the premise of T_{k}^{n}-right 2 we obtain by weakening

$$
\Gamma \Longrightarrow A_{1}, T_{k}^{n-1}\left(A_{2}, \ldots, A_{n}\right), \Delta
$$

From these two we obtain the conclusion by T_{k}^{n}-right. A dual proof using $(*)$ can serve to replace applications of T_{k}^{n}-left2. The size bound holds if we see the two uses of the premise of T_{k}^{n}-right2 as identical, i.e. if the proof is not tree-like.

Theorems 1 and 2 together imply that $P T K^{*}$ enjoys cut-elimination, as the subproofs used in the proof of Theorem 1 are cut-free. They are also tree-like, hence Theorem 1 also holds for cut-free and tree-like proofs. The subproofs used in the proof of Theorem 2 are, as noted, not tree-like, and use cuts. Hence a question is:

Do cut-free and/or tree-like $P T K$-proofs polynomially simulate cut-free / tree-like $P T K^{*}$-proofs?

Another problem is to improve the size bounds in Theorem 2.

Embedding Unary Cutting Planes into $P T K^{*}$

A Unary Cutting Planes $\left(C P^{*}\right)$ inequality can be written in the form

$$
\sum_{i=1}^{n} x_{i}-\sum_{i=n+1}^{n+m} x_{i} \geq k
$$

where $n, m \in \mathbb{N}, k \in \mathbb{Z}$ and the variables x_{1}, \ldots, x_{n+m} are not necessarily distinct. By a result in [2], a $C P^{*}$-proof can be assumed to use only the axioms $x \geq 0,-x \geq-1$, addition and division by 2 .
For convenience, let $T_{0}^{n}\left(A_{1}, \ldots, A_{n}\right)$ for $n \geq 0$ stand for \top, and $T_{k}^{0}()$ with $k>0$ stand for \perp. Let E denote the inequality above, then its translation \hat{E} in $P T K$ is defined as

$$
T_{r}^{n+m}\left(x_{1}, \ldots, x_{n}, \neg x_{n+1}, \ldots, \neg x_{n+m}\right)
$$

where $r:=\max (k+m, 0)$.
Theorem 3. Let P be a $C P^{*}$-proof of an inequality E from the inequalities E_{1}, \ldots, E_{n}. Then there is a PTK ${ }^{*}$-proof of the sequent

$$
\hat{E}_{1}, \ldots, \hat{E}_{n} \Longrightarrow \hat{E}
$$

of threshold depth 1 and size $O\left(|P|^{O(1)}\right)$.
This implies that threshold depth $1 P T K^{*}$-proofs can p-simulate $C P^{*}$ in the following sense:

Corollary 4. If A is a tautology in $D N F$ such that $\neg A$, written as a set of $C P^{*}$-inequalities, has a $C P^{*}$-refutation of size s, then there is a $P T K^{*}$-proof of A of threshold depth 1 and size $O\left(s^{O(1)}+|A|\right)$.

Proof. Let A be $\bigvee_{i \leq n} \bigwedge_{j \in J_{i}} \ell_{i j}$, then by the theorem there is a proof in $P T K^{*}$ of

$$
\bigvee_{j \in J_{1}} \bar{\ell}_{1 j}, \ldots, \bigvee_{j \in J_{n}} \bar{\ell}_{n j} \Longrightarrow \perp
$$

of threshold depth 1 and size $O\left(s^{O(1)}\right)$. From this, A can be derived trivially in size $O(|A|)$.

By Theorem 2, the same holds for PTK in place of PTK*. To prove Theorem 3 , we first derive a series of lemmas. The first lemma is simple and can be proved by the reader.

Lemma 5. There is a proof in $P T K^{*}$ of the sequent

$$
T_{k}^{n}\left(A_{1}, \ldots, A_{n}\right) \Longrightarrow T_{k-1}^{n}\left(A_{1}, \ldots, A_{n}\right)
$$

of threshold depth 1 and size $O(n)$
Here, as well as in the following lemmas, when we say a proof has threshold depth 1 we mean that its threshold depth is at most $1+$ the maximal threshold depth of the subformulae A_{i}. In particular, its threshold depth is 1 if the A_{i} do not contain any threshold connectives.

Lemma 6. There is a proof in PTK* of the equivalence

$$
T_{k+1}^{n+2}\left(A, \neg A, B_{1}, \ldots, B_{n}\right) \leftrightarrow T_{k}^{n}\left(B_{1}, \ldots, B_{n}\right)
$$

of threshold depth 1 and size $O(n)$.
Proof. Let \vec{B} abbreviate B_{1}, \ldots, B_{n}. From the axioms $T_{k}^{n}(\vec{B}) \Longrightarrow T_{k}^{n}(\vec{B})$ and $A \Longrightarrow A$, we get the sequent

$$
T_{k+1}^{n+2}(A, \neg A, \vec{B}) \Longrightarrow A, T_{k}^{n}(\vec{B})
$$

by T_{k}^{n}-left2 and then T_{k}^{n}-left1. In the same way using the axiom $\neg A \Longrightarrow \neg A$ we get

$$
T_{k+1}^{n+2}(A, \neg A, \vec{B}) \Longrightarrow \neg A, T_{k}^{n}(\vec{B})
$$

using T_{k}^{n}-left1 first and then T_{k}^{n}-left2. From these the sequent in the lemma follows by a cut.

Lemma 7. There is a proof in PTK* of the following equivalence, the generalized De Morgan law

$$
\neg T_{k}^{n}\left(A_{1}, \ldots, A_{n}\right) \leftrightarrow T_{n-k+1}^{n}\left(\neg A_{1}, \ldots, \neg A_{n}\right)
$$

of threshold depth 1 and size $O\left(n^{3}\right)$.
Proof. For the direction from left to right, we have to derive the sequent $S_{n, k}:=\Longrightarrow T_{k}^{n}\left(A_{1}, \ldots, A_{n}\right), T_{n-k+1}^{n}\left(\neg A_{1}, \ldots, \neg A_{n}\right)$. First, we derive $S_{n, n}$: From the sequents $\Longrightarrow A_{i}, \neg A_{i}$ for $1 \leq i \leq n$, this is obtained by \wedge-right followed by \vee-right. Dually we get $S_{n, 1}$.
Now for $1<k<n$, we derive $S_{n, k}$ from $S_{n-1, k}$ and $S_{n-1, k-1}$ as follows: From $\Longrightarrow T_{k-1}^{n-1}\left(A_{2}, \ldots, A_{n}\right), T_{n-k+1}^{n-1}\left(\neg A_{2}, \ldots, \neg A_{n}\right)$ and the axiom $A_{1} \Longrightarrow A_{1}$, we derive

$$
A_{1} \Longrightarrow T_{k}^{n}\left(A_{1}, \ldots, A_{n}\right), T_{n-k+1}^{n}\left(\neg A_{1}, \ldots, \neg A_{n}\right)
$$

by T_{k}^{n}-right1 and then T_{k}^{n}-right2. Likewise, from the axiom $\neg A_{1} \Longrightarrow \neg A_{1}$ and $\Longrightarrow T_{k}^{n-1}\left(A_{2}, \ldots, A_{n}\right), T_{n-k}^{n-1}\left(\neg A_{2}, \ldots, \neg A_{n}\right)$ we derive

$$
\neg A_{1} \Longrightarrow T_{k}^{n}\left(A_{1}, \ldots, A_{n}\right), T_{n-k+1}^{n}\left(\neg A_{1}, \ldots, \neg A_{n}\right) .
$$

From these, $S_{n, k}$ is obtained by a cut.
Now a proof for $S_{n, k}$ is obtained by arranging the sequents $S_{i+j, i}$ for $1 \leq i \leq$ k and $0 \leq j \leq n-k$ in a rectangular matrix, where each sequent is proved from those to the left and above it, and those in the first row and column are derived directly. Thus, we get a proof of the direction from left to right that has $O\left(n^{2}\right)$ many sequents and is hence of size $O\left(n^{3}\right)$.
The direction from right to left is proved dually.
Lemma 8. For each permutation $\pi \in S_{n}$, there is a proof in $P T K^{*}$ of the sequent

$$
T_{k}^{n}\left(A_{1}, \ldots, A_{n}\right) \Longrightarrow T_{k}^{n}\left(A_{\pi(1)}, \ldots, A_{\pi(n)}\right)
$$

of threshold depth 1 and size $O\left(n^{4}\right)$.
Proof. We start by proving that the sequents

$$
\begin{equation*}
T_{k}^{n}(A, B, \vec{C}) \Longrightarrow T_{k}^{n}(B, A, \vec{C}) \tag{*}
\end{equation*}
$$

have proofs of threshold depth 1 and size $O(n)$. First, using the axioms $T_{k-2}^{n-2}(\vec{C}) \Longrightarrow T_{k-2}^{n-2}(\vec{C})$ as well as $A \Longrightarrow A$ and $B \Longrightarrow B$ we derive

$$
\tilde{A}, \tilde{B}, T_{k}^{n}(A, B, \vec{C}) \Longrightarrow T_{k}^{n}(B, A, \vec{C})
$$

for each choice of $\tilde{A}=A$ or $\neg A$ and $\tilde{B}=B$ or $\neg B$, which is easily done. From these, $(*)$ is obtained by several cuts. This proof uses constantly many steps, hence is of size $O(n)$.
Next we prove the lemma for special permutations consisting of one cycle of the form $(p p-1 \ldots 1)$: the sequents

$$
(* *) \quad T_{k}^{n}\left(A_{1}, \ldots, A_{n}\right) \Longrightarrow T_{k}^{n}\left(A_{p}, A_{1}, \ldots, A_{p-1}, A_{p+1}, \ldots, A_{n}\right)
$$

have proofs of threshold depth 1 and size $O\left(n^{3}\right)$. Note that the sequent $(* *)$ is easily derived for $k=n$ and $k=1$ using structural inferences, and for $p=2$ it is just an instance of the sequent $(*)$ above.

Next we derive ($* *$) from the two sequents

$$
T_{j}^{n-1}\left(A_{2}, \ldots, A_{n}\right) \Longrightarrow T_{j}^{n-1}\left(A_{p}, A_{2}, \ldots, A_{p-1}, A_{p+1}, \ldots, A_{n}\right)
$$

for $j=k, k-1$ and $A_{1} \Longrightarrow A_{1}$, using first the T_{k}^{n}-rules and a cut to add A_{1} on both sides, and then an instance of $(*)$ and a cut to swap A_{1} and A_{p} in the succedent.

Using these, an inductive proof of $(* *)$ can be built as a rectangular matrix as in the proof of Lemma 7, and like there the size of the resulting proof will be $O\left(n^{3}\right)$.
For the general case, note that any permutation $\pi \in S_{n}$ can be factored into at most n cycles of the above type, hence we get a proof for a general π by at most $n-1$ cuts from instances of the special case above, which gives a proof of size $O\left(n^{4}\right)$.

Lemma 9. The rule T_{k}^{n}-right2 of $P T K^{\prime}$

$$
\frac{\Gamma \Longrightarrow T_{k}^{n}\left(A_{1}, \ldots, A_{n}\right), \Delta \quad \Gamma \Longrightarrow T_{\ell}^{m}\left(B_{1}, \ldots, B_{m}\right), \Delta}{\Gamma \Longrightarrow T_{k+\ell}^{n+m}\left(A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{m}\right), \Delta}
$$

can be simulated in $P T K^{*}$ by a proof of threshold depth 1 and size $O\left(m^{2}(m+\right.$ $n)^{4}$).

Proof. We give a proof of the sequent $S_{m, \ell}$ defined as

$$
T_{k}^{n}\left(A_{1}, \ldots, A_{n}\right), T_{\ell}^{m}\left(B_{1}, \ldots, B_{m}\right) \Longrightarrow T_{k+\ell}^{n+m}\left(A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{m}\right)
$$

then the claim follows by using cuts. First we derive the sequents $S_{m, m}$ from the axioms $T_{k}^{n}\left(A_{1}, \ldots, A_{n}\right) \Longrightarrow T_{k}^{n}\left(A_{1}, \ldots, A_{n}\right)$ and $B_{i} \Longrightarrow B_{i}$ for $1 \leq i \leq m$ giving

$$
T_{k}^{n}\left(A_{1}, \ldots, A_{n}\right), T_{m}^{m}\left(B_{1}, \ldots, B_{m}\right) \Longrightarrow T_{k+m}^{n+m}\left(B_{m}, \ldots, B_{1}, A_{1}, \ldots, A_{n}\right)
$$

from which we get $S_{m, m}$ by Lemma 8 . The size of this proof is dominated by the size of the proof from Lemma 8 , hence it is of size $O\left((m+n)^{4}\right)$.
Similarly from $T_{k}^{n}\left(A_{1}, \ldots, A_{n}\right) \Longrightarrow T_{k}^{n}\left(A_{1}, \ldots, A_{n}\right)$ and $B_{i} \Longrightarrow B_{i}$, we get

$$
T_{k}^{n}\left(A_{1}, \ldots, A_{n}\right), B_{i} \Longrightarrow T_{k+1}^{n+m}\left(A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{m}\right)
$$

for each $1 \leq i \leq m$, hence a \vee-left yields $S_{m, 1}$. This proof consists of m subproofs, each using a proof obtained from Lemma 8, so it is of size $O\left(m(m+n)^{4}\right)$.
Now we show how to derive $S_{m, \ell}$ from $S_{m-1, \ell-1}$ and $S_{m-1, \ell}$, then a proof of $S_{m, \ell}$ is built as in the proof of Lemma 7. First from $S_{m-1, \ell}$ (with the variables B_{2}, \ldots, B_{m}) and $B_{1} \Longrightarrow B_{1}$ we obtain

$$
T_{k}^{n}\left(A_{1}, \ldots, A_{n}\right), T_{\ell}^{m}\left(B_{1}, \ldots, B_{m}\right) \Longrightarrow B_{1}, T_{k+\ell}^{n+m}\left(A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{m}\right)
$$

On the other hand, from $S_{m-1, \ell-1}$ and $B_{1} \Longrightarrow B_{1}$ we obtain

$$
T_{k}^{n}\left(A_{1}, \ldots, A_{n}\right), T_{\ell}^{m}\left(B_{1}, \ldots, B_{m}\right), B_{1} \Longrightarrow T_{k+\ell}^{n+m}\left(A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{m}\right)
$$

Hence we obtain $S_{m, \ell}$ by a cut.
The whole proof of $S_{m, \ell}$ consists of $O\left(m^{2}\right)$ many proofs of size $O\left((m+n)^{4}\right)$, plus $O(m)$ proofs of sequents $S_{i, i}$ and $S_{i, 1}$ whose size is negligible, hence its size is $O\left(m^{2}(m+n)^{4}\right)$.

Proof of Theorem 3. By induction on the number of inferences in P. If this number is 1 , then P consists only of the inequality E, and either $E=E_{i}$ for some $1 \leq i \leq n$, or E is a $C P^{*}$-axiom $x \geq 0$ or $-x \geq-1$. In either of these cases, the claim is trivial. Otherwise, P has a last inference, and we have to distinguish whether this is an addition or a division inference.
Let the last inference be an addition whose premises are

$$
\sum_{i=1}^{n} x_{i}-\sum_{i=n+1}^{n+m} x_{i} \geq k \text { and } \sum_{i=1}^{p} y_{i}-\sum_{i=p+1}^{p+q} y_{i} \geq \ell
$$

and whose conclusion is

$$
\sum_{i=1}^{s} z_{i}-\sum_{i=n+1}^{s+t} z_{i} \geq k+\ell
$$

with $s=n+p-c$ and $t=m+q-c$, where c is the number of cancellations in the inference. We treat only the case where $k+m \geq 0$ and $\ell+q \geq 0$. So from the translations of the premises we get by Lemma 9

$$
T_{k+\ell+m+q}^{n+m+p+q}\left(x_{1}, \ldots, x_{n}, \neg x_{n+1}, \ldots, \neg x_{n+m}, y_{1}, \ldots, y_{p}, \neg y_{p+1}, \ldots, \neg y_{p+q}\right) .
$$

By Lemma 8 we can sort the arguments such that all possible cancellations can be made by c applications of Lemma 6 . After that the arguments can be sorted using Lemma 8 such that the result is

$$
T_{k+\ell+t}^{s+t}\left(z_{1}, \ldots, z_{s}, \neg z_{s+1}, \ldots, \neg z_{s+t}\right)
$$

which is the translation of the conclusion of the addition inference.
For the case of division, suppose we have

$$
T_{k}^{2 n}\left(A_{1}, A_{1}, A_{2}, A_{2}, \ldots, A_{n}, A_{n}\right) .
$$

We want to derive $T_{\left\lceil\frac{k}{2}\right\rceil}^{n}\left(A_{1}, A_{2}, \ldots, A_{n}\right)$, so for sake of contradiction, assume $\neg T_{\left\lceil\frac{k}{2}\right\rceil}^{n}\left(A_{1}, A_{2}, \ldots, A_{n}\right)$. By Lemma 7 , we get

$$
T_{n-\left\lceil\frac{k}{2}\right\rceil+1}^{n}\left(\neg A_{1}, \neg A_{2}, \ldots, \neg A_{n}\right)
$$

and adding this to itself using Lemmas 9 and 8 , we obtain

$$
T_{2 n-2\left\lceil\frac{k}{2}\right\rceil+2}^{2 n}\left(\neg A_{1}, \neg A_{1}, \neg A_{2}, \neg A_{2}, \ldots, \neg A_{n}, \neg A_{n}\right)
$$

Using Lemma 7 again yields

$$
\neg T_{2\left\lceil\frac{k}{2}\right\rceil-1}^{2 n}\left(A_{1}, A_{1}, A_{2}, A_{2}, \ldots, A_{n}, A_{n}\right)
$$

and since $2\left\lceil\frac{k}{2}\right\rceil-1 \leq k$, we get a contradiction by using Lemma 5. This argument can be formalized in $P T K^{*}$ using cuts.

By the size and depth bounds for the lemmas used, the whole proof is of threshold depth 1 and of size polynomial in the size of the proof P.

References

[1] S. R. Buss and P. Clote. Cutting planes, connectivity and threshold logic. Archive for Mathematical Logic, 35:33-62, 1995.
[2] S. R. Buss and P. Clote. Threshold logic proof systems. Unpublished manuscript, 1995.
[3] J. Johannsen. Equational calculi and constant-depth propositional proofs. In P. Beame and S. R. Buss, editors, Proof Complexity and Feasible Arithmetics, pages 149-162. AMS DIMACS Series Vol. 39, 1998.

