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Yet Another Formulation of Propositional Threshold Logi

Let PTK

�

be de�ned like PTK in [1, 2℄, but with the rule T

n

k

-right replaed

by the two rules

T

n

k

-right1 :

� =) A

1

;� � =) T

n�1

k�1

(A

2

; : : : ; A

n

);�

� =) T

n

k

(A

1

; : : : ; A

n

);�

T

n

k

-right2 :

� =) T

n�1

k

(A

2

; : : : ; A

n

);�

� =) T

n

k

(A

1

; : : : ; A

n

);�

and T

n

k

-left replaed by the two dual rules

T

n

k

-left1 :

A

1

;� =) � T

n�1

k

(A

2

; : : : ; A

n

);� =) �

T

n

k

(A

1

; : : : ; A

n

);� =) �

T

n

k

-left2 :

T

n�1

k�1

(A

2

; : : : ; A

n

);� =) �

T

n

k

(A

1

; : : : ; A

n

);� =) �

:

The orretness of PTK

�

is obvious, and the ompleteness follows from

Theorem 1 below and the ompleteness of PTK. In the following, we show

that PTK and PTK

�

are polynomially equivalent, and that the mutual

simulations also respet the depth of proofs. This was laimed without

proof in [3℄, where PTK

�

was �rst de�ned.

Theorem 1. If P is a proof in PTK, then there is a proof P

0

in PTK

�

of the same end-sequent. The size of P

0

is linear in the size of P , and the

formula depths of P and P

0

are the same.

Proof. Eah appliation of the rule T

n

k

-right is replaed by a subproof that is

built as follows: From the seond premise we get by weakening the sequent

� =) T

n�1

k�1

(A

2

; : : : ; A

n

); T

n�1

k

(A

2

; : : : ; A

n

);� ;
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and from this and the �rst premise we get by an appliation of T

n

k

-right1

� =) T

n

k

(A

1

; : : : ; A

n

); T

n�1

k

(A

2

; : : : ; A

n

);� :

From this sequent we obtain the onlusion by strutural inferenes and T

n

k

-

right2. Likewise, eah appliation of T

n

k

-left is replaed by a similar, dual

subproof. The size and depth bounds are obvious.

Theorem 2. If P is a proof in PTK

�

, then there is a proof P

0

in PTK of

the same end-sequent. The size of P

0

is polynomial in the size of P , and the

formula depths of P and P

0

are the same.

Proof. First, eah appliation of the rule T

n

k

-right1 an be simulated by

T

n

k

-right of PTK preeded by a weakening, and likewise T

n

k

-left1 an be

simulated using weakening and T

n

k

-left.

In [2℄ it was noted that the sequents

T

m

`

(A

1

; : : : ; A

m

) =) T

m

`�1

(A

1

; : : : ; A

m

)(�)

have proofs in PTK of size polynomial in m. Using these, we an replae

eah appliation of T

n

k

-right2 by a subproof onstruted as follows: From

the premise of T

n

k

-right2 and an instane of (�) we obtain

� =) T

n�1

k�1

(A

2

; : : : ; A

n

);� ;

by a ut, and again from the premise of T

n

k

-right2 we obtain by weakening

� =) A

1

; T

n�1

k

(A

2

; : : : ; A

n

);� :

From these two we obtain the onlusion by T

n

k

-right. A dual proof using

(�) an serve to replae appliations of T

n

k

-left2. The size bound holds if we

see the two uses of the premise of T

n

k

-right2 as idential, i.e. if the proof is

not tree-like.

Theorems 1 and 2 together imply that PTK

�

enjoys ut-elimination, as

the subproofs used in the proof of Theorem 1 are ut-free. They are also

tree-like, hene Theorem 1 also holds for ut-free and tree-like proofs. The

subproofs used in the proof of Theorem 2 are, as noted, not tree-like, and

use uts. Hene a question is:

Do ut-free and/or tree-like PTK-proofs polynomially simulate

ut-free / tree-like PTK

�

-proofs?

Another problem is to improve the size bounds in Theorem 2.
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Embedding Unary Cutting Planes into PTK

�

A Unary Cutting Planes (CP

�

) inequality an be written in the form

n

X

i=1

x

i

�

n+m

X

i=n+1

x

i

� k ;

where n;m 2 N, k 2 Z and the variables x

1

; : : : ; x

n+m

are not neessarily

distint. By a result in [2℄, a CP

�

-proof an be assumed to use only the

axioms x � 0, �x � �1, addition and division by 2.

For onveniene, let T

n

0

(A

1

; : : : ; A

n

) for n � 0 stand for >, and T

0

k

() with

k > 0 stand for ?. Let E denote the inequality above, then its translation

^

E in PTK is de�ned as

T

n+m

r

(x

1

; : : : ; x

n

;:x

n+1

; : : : ;:x

n+m

) ;

where r := max(k +m; 0).

Theorem 3. Let P be a CP

�

-proof of an inequality E from the inequalities

E

1

; : : : ; E

n

. Then there is a PTK

�

-proof of the sequent

^

E

1

; : : : ;

^

E

n

=)

^

E

of threshold depth 1 and size O(jP j

O(1)

).

This implies that threshold depth 1 PTK

�

-proofs an p-simulate CP

�

in

the following sense:

Corollary 4. If A is a tautology in DNF suh that :A, written as a set of

CP

�

-inequalities, has a CP

�

-refutation of size s, then there is a PTK

�

-proof

of A of threshold depth 1 and size O(s

O(1)

+ jAj).

Proof. Let A be

W

i�n

V

j2J

i

`

ij

, then by the theorem there is a proof in PTK

�

of

_

j2J

1

�

`

1j

; : : : ;

_

j2J

n

�

`

nj

=) ?

of threshold depth 1 and size O(s

O(1)

). From this, A an be derived trivially

in size O(jAj).

By Theorem 2, the same holds for PTK in plae of PTK

�

. To prove Theo-

rem 3, we �rst derive a series of lemmas. The �rst lemma is simple and an

be proved by the reader.
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Lemma 5. There is a proof in PTK

�

of the sequent

T

n

k

(A

1

; : : : ; A

n

) =) T

n

k�1

(A

1

; : : : ; A

n

)

of threshold depth 1 and size O(n)

Here, as well as in the following lemmas, when we say a proof has threshold

depth 1 we mean that its threshold depth is at most 1 + the maximal

threshold depth of the subformulae A

i

. In partiular, its threshold depth is

1 if the A

i

do not ontain any threshold onnetives.

Lemma 6. There is a proof in PTK

�

of the equivalene

T

n+2

k+1

(A;:A;B

1

; : : : ; B

n

) $ T

n

k

(B

1

; : : : ; B

n

)

of threshold depth 1 and size O(n).

Proof. Let

~

B abbreviate B

1

; : : : ; B

n

. From the axioms T

n

k

(

~

B) =) T

n

k

(

~

B)

and A =) A, we get the sequent

T

n+2

k+1

(A;:A;

~

B) =) A; T

n

k

(

~

B)

by T

n

k

-left2 and then T

n

k

-left1. In the same way using the axiom :A =) :A

we get

T

n+2

k+1

(A;:A;

~

B) =) :A; T

n

k

(

~

B)

using T

n

k

-left1 �rst and then T

n

k

-left2. From these the sequent in the lemma

follows by a ut.

Lemma 7. There is a proof in PTK

�

of the following equivalene, the gen-

eralized De Morgan law

:T

n

k

(A

1

; : : : ; A

n

) $ T

n

n�k+1

(:A

1

; : : : ;:A

n

)

of threshold depth 1 and size O(n

3

).

Proof. For the diretion from left to right, we have to derive the sequent

S

n;k

:==) T

n

k

(A

1

; : : : ; A

n

); T

n

n�k+1

(:A

1

; : : : ;:A

n

). First, we derive S

n;n

:

From the sequents =) A

i

;:A

i

for 1 � i � n, this is obtained by ^ -right

followed by _ -right. Dually we get S

n;1

.

Now for 1 < k < n, we derive S

n;k

from S

n�1;k

and S

n�1;k�1

as follows: From

=) T

n�1

k�1

(A

2

; : : : ; A

n

); T

n�1

n�k+1

(:A

2

; : : : ;:A

n

) and the axiom A

1

=) A

1

,

we derive

A

1

=) T

n

k

(A

1

; : : : ; A

n

); T

n

n�k+1

(:A

1

; : : : ;:A

n

)
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by T

n

k

-right1 and then T

n

k

-right2. Likewise, from the axiom :A

1

=) :A

1

and =) T

n�1

k

(A

2

; : : : ; A

n

); T

n�1

n�k

(:A

2

; : : : ;:A

n

) we derive

:A

1

=) T

n

k

(A

1

; : : : ; A

n

); T

n

n�k+1

(:A

1

; : : : ;:A

n

) :

From these, S

n;k

is obtained by a ut.

Now a proof for S

n;k

is obtained by arranging the sequents S

i+j;i

for 1 � i �

k and 0 � j � n� k in a retangular matrix, where eah sequent is proved

from those to the left and above it, and those in the �rst row and olumn

are derived diretly. Thus, we get a proof of the diretion from left to right

that has O(n

2

) many sequents and is hene of size O(n

3

).

The diretion from right to left is proved dually.

Lemma 8. For eah permutation � 2 S

n

, there is a proof in PTK

�

of the

sequent

T

n

k

(A

1

; : : : ; A

n

) =) T

n

k

(A

�(1)

; : : : ; A

�(n)

)

of threshold depth 1 and size O(n

4

).

Proof. We start by proving that the sequents

(�) T

n

k

(A;B;

~

C) =) T

n

k

(B;A;

~

C)

have proofs of threshold depth 1 and size O(n). First, using the axioms

T

n�2

k�2

(

~

C) =) T

n�2

k�2

(

~

C) as well as A =) A and B =) B we derive

~

A;

~

B;T

n

k

(A;B;

~

C) =) T

n

k

(B;A;

~

C)

for eah hoie of

~

A = A or :A and

~

B = B or :B, whih is easily done.

From these, (�) is obtained by several uts. This proof uses onstantly many

steps, hene is of size O(n).

Next we prove the lemma for speial permutations onsisting of one yle of

the form (p p�1 : : : 1): the sequents

(��) T

n

k

(A

1

; : : : ; A

n

) =) T

n

k

(A

p

; A

1

; : : : ; A

p�1

; A

p+1

; : : : ; A

n

)

have proofs of threshold depth 1 and size O(n

3

). Note that the sequent (��)

is easily derived for k = n and k = 1 using strutural inferenes, and for

p = 2 it is just an instane of the sequent (�) above.

Next we derive (��) from the two sequents

T

n�1

j

(A

2

; : : : ; A

n

) =) T

n�1

j

(A

p

; A

2

; : : : ; A

p�1

; A

p+1

; : : : ; A

n

)
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for j = k; k � 1 and A

1

=) A

1

, using �rst the T

n

k

-rules and a ut to add

A

1

on both sides, and then an instane of (�) and a ut to swap A

1

and A

p

in the suedent.

Using these, an indutive proof of (��) an be built as a retangular matrix

as in the proof of Lemma 7, and like there the size of the resulting proof

will be O(n

3

).

For the general ase, note that any permutation � 2 S

n

an be fatored into

at most n yles of the above type, hene we get a proof for a general � by

at most n � 1 uts from instanes of the speial ase above, whih gives a

proof of size O(n

4

).

Lemma 9. The rule T

n

k

-right2 of PTK

0

� =) T

n

k

(A

1

; : : : ; A

n

);� � =) T

m

`

(B

1

; : : : ; B

m

);�

� =) T

n+m

k+`

(A

1

; : : : ; A

n

; B

1

; : : : ; B

m

);�

an be simulated in PTK

�

by a proof of threshold depth 1 and size O(m

2

(m+

n)

4

).

Proof. We give a proof of the sequent S

m;`

de�ned as

T

n

k

(A

1

; : : : ; A

n

); T

m

`

(B

1

; : : : ; B

m

) =) T

n+m

k+`

(A

1

; : : : ; A

n

; B

1

; : : : ; B

m

) ;

then the laim follows by using uts. First we derive the sequents S

m;m

from the axioms T

n

k

(A

1

; : : : ; A

n

) =) T

n

k

(A

1

; : : : ; A

n

) and B

i

=) B

i

for

1 � i � m giving

T

n

k

(A

1

; : : : ; A

n

); T

m

m

(B

1

; : : : ; B

m

) =) T

n+m

k+m

(B

m

; : : : ; B

1

; A

1

; : : : ; A

n

)

from whih we get S

m;m

by Lemma 8. The size of this proof is dominated

by the size of the proof from Lemma 8, hene it is of size O((m+ n)

4

).

Similarly from T

n

k

(A

1

; : : : ; A

n

) =) T

n

k

(A

1

; : : : ; A

n

) and B

i

=) B

i

, we get

T

n

k

(A

1

; : : : ; A

n

); B

i

=) T

n+m

k+1

(A

1

; : : : ; A

n

; B

1

; : : : ; B

m

)

for eah 1 � i � m, hene a _ -left yields S

m;1

. This proof onsists of

m subproofs, eah using a proof obtained from Lemma 8, so it is of size

O(m(m+ n)

4

).

Now we show how to derive S

m;`

from S

m�1;`�1

and S

m�1;`

, then a proof

of S

m;`

is built as in the proof of Lemma 7. First from S

m�1;`

(with the

variables B

2

; : : : ; B

m

) and B

1

=) B

1

we obtain

T

n

k

(A

1

; : : : ; A

n

); T

m

`

(B

1

; : : : ; B

m

) =) B

1

; T

n+m

k+`

(A

1

; : : : ; A

n

; B

1

; : : : ; B

m

)
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On the other hand, from S

m�1;`�1

and B

1

=) B

1

we obtain

T

n

k

(A

1

; : : : ; A

n

); T

m

`

(B

1

; : : : ; B

m

); B

1

=) T

n+m

k+`

(A

1

; : : : ; A

n

; B

1

; : : : ; B

m

)

Hene we obtain S

m;`

by a ut.

The whole proof of S

m;`

onsists of O(m

2

) many proofs of size O((m+n)

4

),

plus O(m) proofs of sequents S

i;i

and S

i;1

whose size is negligible, hene its

size is O(m

2

(m+ n)

4

).

Proof of Theorem 3. By indution on the number of inferenes in P . If this

number is 1, then P onsists only of the inequality E, and either E = E

i

for some 1 � i � n, or E is a CP

�

-axiom x � 0 or �x � �1. In either of

these ases, the laim is trivial. Otherwise, P has a last inferene, and we

have to distinguish whether this is an addition or a division inferene.

Let the last inferene be an addition whose premises are

n

X

i=1

x

i

�

n+m

X

i=n+1

x

i

� k and

p

X

i=1

y

i

�

p+q

X

i=p+1

y

i

� `

and whose onlusion is

s

X

i=1

z

i

�

s+t

X

i=n+1

z

i

� k + ` ;

with s = n+ p�  and t = m+ q� , where  is the number of anellations

in the inferene. We treat only the ase where k+m � 0 and `+ q � 0. So

from the translations of the premises we get by Lemma 9

T

n+m+p+q

k+`+m+q

(x

1

; : : : ; x

n

;:x

n+1

; : : : ;:x

n+m

; y

1

; : : : ; y

p

;:y

p+1

; : : : ;:y

p+q

) :

By Lemma 8 we an sort the arguments suh that all possible anellations

an be made by  appliations of Lemma 6. After that the arguments an

be sorted using Lemma 8 suh that the result is

T

s+t

k+`+t

(z

1

; : : : ; z

s

;:z

s+1

; : : : ;:z

s+t

) ;

whih is the translation of the onlusion of the addition inferene.

For the ase of division, suppose we have

T

2n

k

(A

1

; A

1

; A

2

; A

2

; : : : ; A

n

; A

n

) :
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We want to derive T

n

d

k

2

e

(A

1

; A

2

; : : : ; A

n

), so for sake of ontradition, assume

:T

n

d

k

2

e

(A

1

; A

2

; : : : ; A

n

). By Lemma 7, we get

T

n

n�d

k

2

e+1

(:A

1

;:A

2

; : : : ;:A

n

)

and adding this to itself using Lemmas 9 and 8, we obtain

T

2n

2n�2d

k

2

e+2

(:A

1

;:A

1

;:A

2

;:A

2

; : : : ;:A

n

;:A

n

) :

Using Lemma 7 again yields

:T

2n

2d

k

2

e�1

(A

1

; A

1

; A

2

; A

2

; : : : ; A

n

; A

n

) ;

and sine 2d

k

2

e � 1 � k, we get a ontradition by using Lemma 5. This

argument an be formalized in PTK

�

using uts.

By the size and depth bounds for the lemmas used, the whole proof is of

threshold depth 1 and of size polynomial in the size of the proof P .
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