Pich and Santhanam [1] define a generalization of the feasible interpolation property for a propositional proof system P as follows: P has KPT interpolation if there is a constant k and polynomial time computable functions $f_1, \ldots f_k$, such that whenever π is a P-proof of a disjunction

$$A_1(x, y_1) \lor \ldots \lor A_m(x, y_m)$$

where x is an n-tuple of variables and the y_j are disjoint tuples of variables, then for every $a \in \{0, 1\}^n$ one of the following holds:

- either $A_{i_1}(a, y_{i_1})$ is a tautology for $i_1 = f_1(a, \pi)$,
- or $A_{i_2}(a, y_{i_2})$ is a tautology for $i_2 = f_2(a, \pi, b_{i_1})$, for b_{i_1} such that $A_{i_1}(a, b_{i_1})$ is false,
- • •
- or $A_{i_k}(a, y_{i_k})$ is a tautology for $i_2 = f_2(a, \pi, b_{i_1}, \dots, b_{i_{k-1}})$, for $b_{i_{k-1}}$ such that $A_{i_{k-1}}(a, b_{i_{k-1}})$ is false.

The paper under review shows that sufficiently strong propositional proof systems do not have KPT interpolation, under a mild complexity assumption. The complexity assumption and the method of proof are similar to those used to show that strong proof systems do not have feasible interpolation.

References

 J. Pich and R. Santhanam. Strong co-nondeterministic lower bounds for NP cannot be proved feasibly. In S. Khuller and V. V. Williams, editors, STOC '21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages 223–233. ACM, 2021.