In this paper, a new propositional proof system **H** is introduced, that allows quantification over permutations of the variables. In **H** the syntax of propositional logic is enriched by quantifiers $(\exists ab)\alpha$ and $(\forall ab)\alpha$ for variables a and b, which are intended to be semantically equivalent to $\alpha \lor \alpha[b/a, a/b]$ and $\alpha \land \alpha[b/a, a/b]$, respectively.

The paper studies the fragment of \mathbf{H} with cuts restricted to Σ_1 -formulas, denoted \mathbf{H}_1 . It is shown that \mathbf{H}_1 simulates efficiently the Hajós calculus (**HC**) for constructing graphs which are non-3-colorable. This shows that short proofs using formulas asserting the existence of permutations of the variables can capture polynomial time reasoning, as it is known [1] that **HC** is equivalent to Extended Frege systems (**EF**), which capture polynomial time reasoning.

The converse direction is left open, but it is shown that at least \mathbf{EF} efficiently simulates tree-like proofs in \mathbf{H}_1 .

References

 T. Pitassi and A. Urquhart, The complexity of the Hajós calculus, SIAM J. Discrete Math. 8 (1995), no. 3, 464–483. MR1341550 (96h:68151)