A major open problem in Bounded Arithmetic is to find suitable characterizations of the Σ_i^b -definable search problems of the theories T_2^k for i < k, which might allow a separation of the hierarchy of relativized theories $T_2^k(\alpha)$ by formulas of lower quantifier complexity.

In this paper, a new characterisation of the \sum_{i+1}^{b} -definable search problems of the theories T_2^{k+1} , for $i \leq k$ is given. These characterisations are in terms of a generalisation of the class PLS of polynomial local search problems to the polynomial time hierarchy, the Π_k^b -PLS problems with Π_i^b -goals also introduced in the present paper. They are proved using the method of proof notations developed by the first author with Aehlig [1].

Essentially the same results have also been shown by a more traditional witnessing argument in a companion paper [2] by the authors.

References

- K. Aehlig and A. Beckmann, On the computational complexity of cut-reduction, Ann. Pure Appl. Logic 161 (2010), no. 6, 711–736. MR2601027 (2011g:03142)
- [2] A. Beckmann and S. R. Buss, Polynomial local search in the polynomial hierarchy and witnessing in fragments of bounded arithmetic, J. Math. Log. 9 (2009), no. 1, 103–138. MR2665783