
This paper proposes a new framework to investigate the complexity of
propositional proof systems, starting from the observation that most of the
known lower bounds are shown for sequences of tautologies given uniformly.

A ∆0(α)-formula is a bounded formula in the language of Peano Arith-
metic with an additional predicate symbol α. For such a formula ϕ, the
well-known Paris-Wilkie translation produces a sequence of propositional
formulas, where the nth formula expresses that ϕ holds of the integers up to
n.

For a proof system P , the set UP is defined as the set of those ∆0(α)-
formulas ϕ whose Paris-Wilkie-translations have polynomial size proofs in
P . If P is polynomially bounded, then UP coincides with the set T of
∆0(α)-formulas that are true in the integers, and similarly, if P polynomially
simulates Q, then UQ ⊆ UP , but the converses of these statements do not
necessarily hold.

First, some known separations [1, 2] and lower bounds [3, 4] for bounded-
depth Frege systems are phrased in this framework. As first steps into the
proposed research direction, two topics are then studied: the arithmetic
complexity of the sets UP , and logical properties of these sets.

It is easily seen that T is complete for the class Π0
1 of co-c.e. sets. Here it

is shown that for every proof system P , the set UP is in the class Σ0
2 in the

arithmetical hierarchy, and hard for Π0
1. Thus showing UP /∈ Π0

1 for some P
would imply super-polynomial lower bounds for P .

Finally, some closure properties of the sets UP are shown under various
assumptions on P . Moreover, the following result concerning a variant U ′

P

of UP , defined w.r.t. a language extended by a function symbol for expo-
nentiation, is obtained: Such a set U ′

P is logically closed if and only if it
coincides with the set T ′ of true ∆0(α)-formulas in this language, in other
words, for all proof systems P the set U ′

P axiomatizes T ′. The proof of this
result uses an upper bound on the size of cut-free LK-proofs that might be
of independent interest.
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