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Abstract. Resolution trees with lemmas (RTL) are a resolution-based
propositional proof system that is related to the DPLL algorithm with
clause learning. Its fragments RTL(k) are related to clause learning al-
gorithms where the width of learned clauses is bounded by k.
For every k up to O(logn), an exponential separation between the proof
systems RTL(k) and RTL(k + 1) is shown.

1 Introduction

Many of the most efficient contemporary SAT solvers belong to the class of
conflict-driven clause learning (CDCL) solvers. Historically, these solvers devel-
oped as extensions of the basic backtracking procedure known as the DPLL
algorithm [9, 8], even though their most recent versions use more general forms
of backtracking.

This recursive DPLL procedure is called for a formula F in conjunctive nor-
mal form and a partial assignment α (which is empty in the outermost call). If
α satisfies F , then it is returned, and if α causes a conflict, i.e., falsifies a clause
in F , then the call fails. Otherwise a variable x not set by α is chosen, and the
procedure is called recursively twice, with α extended by x := 1 and by x := 0.
If one of the recursive calls returns a satisfying assignment, then it is returned,
otherwise the call fails.

The first generations of CDCL solvers employed several refinements and
extensions of the basic DPLL algorithm, including clause learning [14], non-
chronological backtracking [1] and restarts [10]. Crucial for their success is the
technique of clause learning [14]: when the procedure finds a conflict, a sub-
assignment α′ of the current assignment α is computed such that α′ suffices
to cause this conflict. This sub-assignment α′, the reason for the conflict, can
then be stored in form of a new clause added to the formula, viz. the unique
largest clause Cα′ falsified by α′. This way, when in a later branch of the search
another partial assignment extending α′ occurs, earlier backtracking is possible
since then the added clause Cα′ causes a conflict.

When clause learning is implemented, a strategy is needed to decide which
learnable clauses to keep in memory, because learning too many clauses leads
to excessive memory consumption. Early learning strategies were such that the



width, i.e., the number of literals, of learned clauses was restricted (see e.g.
[14, Sec. 3.2]). Experience has shown that such learning strategies are not very
helpful, i.e., learning only short clauses does not significantly improve the per-
formance of a DPLL algorithm for hard formulas. This experience is supported
by several lower bound theorems.

Contemporary CDCL solvers use more general forms of backtracking, which
are not represented by the recursive DPLL algorithm scheme above, since it
may be the case that branches in the search tree pruned in backtracking contain
satisfying assignments. Therefore, in the following we speak about DPLL algo-
rithms with clause learning instead of CDCL algorithms, to make it clear that
our results apply to these earlier class of algorithms, where it is enforced that no
satisfying branches are pruned. It remains to be investigated whether the results
carry over to more contemporary CDCL algorithms.

The first lower bound for width-restricted clause learning was shown [6] for
the well-known pigeonhole principle clauses PHPn. These formulas require time
2Ω(n logn) to solve when learning clauses of width up to n/2 only, whereas they
can be solved in time 2O(n) when learning arbitrary clauses. Another lower bound
was shown [13] for a a set of clauses Ordn based on the principle that every finite
ordering has a maximal element. These formulas can be solved in polynomial
time when learning arbitrary clauses, but require exponential time to solve when
learning clauses of size up to n/4 only. This lower bound was generalized [4] to
a lower bound exponential in w for all formulas for which a lower bound w on
the width of resolution refutations holds.

All these lower bounds are shown by proving the same lower bounds on the
length of refutations in a certain resolution based propositional proof system
RTL. The relationship of this proof system to the DPLL algorithm with clause
learning was established in several earlier works [6, 12]. The learned clauses
correspond to so-called lemmas in the proof systems, so the mentioned lower
bounds were shown for a restricted version RTL(k) of RTL which allows only
lemmas of width k, for the respective values of k.

In this work, we show that the restricted systems RTL(k) form a strict hi-
erarchy: for every k, we prove an exponential separation of RTL(k + 1) from
RTL(k). In other words, increasing the width of lemmas that can be used by one
can give an exponential speed-up.

2 Preliminaries

A literal is a variable x or a negated variable x̄. A clause is a disjunction C =
a1 ∨ . . . ∨ ak of literals ai. The width of C is k, the number of literals in C. We
identify a clause with the set of literals occurring in it, even though for clarity
we still write it as a disjunction.

A formula in conjunctive normal form (CNF) is a conjunction F = C1 ∧ . . .∧
Cm of clauses, it is usually identified with the set of clauses

{
C1, . . . , Cm

}
. A

formula F in CNF is in k-CNF if every clause C in F is of width w(C) ≤ k.



We consider resolution-based refutation systems for formulas in CNF, which
are strongly related to DPLL algorithms. These proof systems have as their only
inference rule the resolution rule, which allows to infer the clause C ∨ D from
the two clauses C ∨ x and D ∨ x̄, provided that the variable x does not occur in
either C or D, pictorially:

C ∨ x D ∨ x̄

C ∨D

We say that the variable x is eliminated in this inference.

A more general form of resolution inference is w-resolution, which allows to
perform the inference even if the eliminated variable does not occur in one (or
both) of the premises. More precisely, let C and D be clauses such C does not
contain x̄ and D does not contain x, then the w-resolution inference eliminating
x allows to infer the clause (C \ {x}) ∪ (D \ {x̄}) from these.

The w-resolution rule can be simulated by the usual resolution rule together
with the rule of weakening – which allows to conclude from a clause C any super-
clause D ⊇ C – as follows: infer C ∨x and D∨ x̄ by (possibly empty) weakenings,
then apply resolution.

An ordered binary tree is a rooted tree in which every inner node has two
children, a distinguished left and right child. The post-ordering ≺ of an ordered
binary tree is the order in which its nodes are visited by a post-order traversal,
i.e., u ≺ v holds for nodes u, v if u is a descendant of v, or if there is a common
ancestor w of u and v such that u is a descendant of the left child of w and v is
a descendant of the right child of w.

An RTL-derivation of a clause C from a CNF-formula F is an ordered binary
tree, in which every node v is labeled with a clause Cv such that:

1. The root is labeled with C.

2. If v is an inner node with children u1, u2, then Cv follows from Cu1
and Cu2

by the resolution rule.

3. A leaf v is labeled by a clause D in F , or by a clause C labeling some node
u ≺ v. In the latter case we call C a lemma.

An RTL-derivation is an RTL(k)-derivation if every lemma C is of width w(C) ≤
k. An RTL-refutation of F is an RTL-derivation of the empty clause from F .

A tree-like resolution derivation is an RTL-derivation that does not use any
lemmas. An RTL-derivation is called regular if on every path, no variable is
eliminated twice. This condition is inessential for tree-like resolution since min-
imal tree-like refutations are always regular [15]. It is not known whether RTL-
refutations can be simulated by regular RTL-refutations without increasing the
size super-polynomially.

Let V be a set of variables. A restriction ρ of V is a partial assignment
V → {0, 1}. A restriction ρ is extended to literals by setting

ρ(x̄) :=

{
1 if ρ(x) = 0

0 if ρ(x) = 1



For a clause C in variables V , we define

Cdρ :=


1 if ρ(a) = 1 for some a ∈ C∨
a∈C, ρ(a)6=0

a otherwise,

where the empty disjunction is identified with the constant 0. For a CNF-formula
F over V , we define

F dρ :=


0 if Cdρ = 0 for some C ∈ F∧
C∈F,Cdρ6=1

Cdρ otherwise,

where the empty conjunction is identified with 1.

Proposition 1. Let R be a tree-like resolution derivation of C from F of size
s, and ρ a restriction. Then there is a tree-like resolution derivation R′ of Cdρ
from F dρ of size at most s.

In particular, if Cdρ = 0 then R′ is a tree-like resolution refutation of F dρ. As
usual, we denote the derivation R′ by Rdρ.

Tree-like resolution exactly corresponds to the DPLL algorithm by the fol-
lowing well-known correspondence: the search tree produced by the run of a
DPLL algorithm on an unsatisfiable formula F forms a tree-like resolution refu-
tation of F , and from a given tree-like regular resolution refutation of F one
can construct a run of a DPLL algorithm showing the unsatisfiability of F that
produces essentially the given search tree.

Buss et al. [6] define a variant WRTI of RTL which exactly corresponds
to a general formulation of the DPLL algorithm with clause learning. Proofs
in WRTI are regular resolution trees with lemmas using the w-resolution rule,
but in which a clause can only be used as a lemma if it was derived by input
resolution. An input resolution derivation is one in which in every inference step,
one of the children is a leaf, i.e., labeled by a clause from the input formula or
a lemma derived earlier.

The size of a refutation of an unsatisfiable formula F in WRTI has been shown
[6] to be polynomially related to the run-time of a schematic algorithm DLL-
L-UP on F . This schema DLL-L-UP subsumes many clause learning strategies
commonly used in practice [6]. It follows from these results that if an unsatisfiable
formula F can be solved by a DPLL algorithm with clause learning in time t,
then it has an WRTI-refutation, and hence an RTL-refutation of size polynomial
in t. Moreover, if the algorithm learns only clauses of width at most k, then the
refutation is in RTL(k).

3 The Result

Our main result is an exponential separation between the systems RTL with
lemmas restricted to be of width k, for every k:



Theorem 2. For every k, there is a family of formulas F
(k)
n such that

– F
(k)
n have RTL(k + 1)-refutations of polynomial size nO(1).

– F
(k)
n requires RTL(k)-refutations of exponential size 2Ω(n/ logn),

This even holds for k = k(n) depending on n when k(n) = O(log n).

The lower bound also holds for a stronger system that also includes a weakening
rule, the proof requires little to no modification. Therefore, it also applies for
the systems with the w-resolution rule of Buss et al. [6].

On the other hand, the upper bound is shown for the weaker system with
only the usual resolution rule, and the refutations given are regular.

4 Graph Pebbling

Let G = (V,E) be a pointed dag, i.e., a directed acyclic graph having exactly
one sink t, such that every vertex has either in-degree 0 or 2, and let S, T ⊆ V .
The pebble game on (G,S, T ) is played by placing pebbles onto the vertices of G
according to the rules below until a pebble is placed onto a vertex in T . Formally,
a pebbling of (G,S, T ) is a sequence C0, C1, . . . , C` of subsets Ci ⊆ V , where Ci
should be pictured as the set of vertices carrying pebbles at time i, with C0 = ∅
and C` ∩ T 6= ∅ such that for all i < ` one of the following properties holds:

1. Ci+1 = Ci ∪ {u} for some u ∈ S, i.e., a pebble can be put onto a vertex in
S.

2. Ci+1 = Ci ∪ {u} for some u such that all immediate predecessors of u are in
Ci, i.e., if all predecessors of u are pebbled, then u can be pebbled.

3. Ci+1 ⊂ Ci, i.e., pebbles can be removed from vertices.

By (2), a source vertex can be pebbled at any time, so we can always assume
that S contains all sources of G.

The complexity of a pebbling is maxi≤` |Ci|, i.e., the maximal number of
pebbles used. The pebbling number peb(G,S, T ) is the minimal complexity of a
pebbling of (G,S, T ). The pebbling number peb(G) of G is peb(G, ∅, {t}).

We shall need the following well-known property of the pebbling number [3].

Lemma 3. For every pointed dag G = (V,E), disjoint subsets S, T ⊆ V and v ∈
V \S∪T , we have peb(G,S, T ) ≤ max(peb(G,S∪{v}, T ),peb(G,S, T∪{v}))+1.

Graphs with a maximally large pebbling number were constructed by Celoni
et al. [7]:

Theorem 4. There are pointed graphs Gn with n vertices such that peb(Gn) ≥
Ω(n/ log n).



5 Pebbling Formulas

For a pointed dag G = (V,E), the pebbling formula Peb(G) is the unsatisfiable
formula in variables xv for v ∈ V consisting of the following clauses:

– xs for every source s
– x̄u ∨ x̄v ∨ xw for every inner vertex w with predecessors u and v
– x̄t for the sink t

The formula Peb(G) has a short tree-like resolution refutation of linear size, since
it is a Horn formula. Ben-Sasson et al. [3] construct harder to refute formulas
from them by replacing every variable x with the disjunction of two new variables
x1∨x2. For the resulting formulas Peb2(G) they show a lower bound for tree-like
resolution that is exponential in the pebbling number peb(G).

6 Generalized Xorification

A different way to make a boolean formula harder is xorification, i.e., replacing
every variable by the XOR of two or more variables. This technique has been
used in proof complexity so far mainly for space lower bounds [2, 5]. It also has
been applied in circuit complexity, e.g. to obtain cubic lower bounds on formula
size1 [11].

The formulas that witness the separations in Theorem 2 are obtained by
xorification from the pebbling formulas Peb(G). In the lower bound argument,
restrictions will be applied to these formulas, and in order to understand and
analyze the restricted formulas, we introduce a generalized form of xorification.

We generalize xorification in two ways: first, some variables are replaced
by the XOR of k variables, whereas some other variables are replaced by the
negation of the XOR of k variables. Second, some designated variables are not
replaced at all, but remain a single variable or its negation. Thus, for every
variable two bits β0 and β1 specify how it occurs in the xorification: β0 controls
whether it is replaced by an XOR or not, and β1 specifies whether it is negated
or not. This is made precise in the following definition:

Let F be a formula in variables from a set V . Recall that ¬x is equivalent to
x⊕1. For k ∈ N and a function β : V → {0, 1}2, where we denote the components
of β by β(x) = (β0(x), β1(x)), the generalized xorification X(F, k, β) is defined
by:

– X(x, k, β) = x1 ⊕ . . .⊕ xk ⊕ β1(x) for a variable x ∈ V with β0(x) = 0.
– X(x, k, β) = x1 ⊕ β1(x) for a variable x ∈ V with β0(x) = 1.
– X(x̄, k, β) = X(x, k, β)⊕ 1 for a negated variable x ∈ V .
– X(C, k, β) =

∨
a∈C X(a, k, β) expanded into CNF, for a clause C.

– X(F, k, β) =
∧
C∈F X(C, k, β) for a CNF formula F .

1 I am grateful to Ryan Williams for providing this reference on
cstheory.stackexchange.com



For the pebbling formulas Peb(G), we use the abbreviation Peb⊕kβ (G) for
X(Peb(G), k, β), and we omit the lower index if β is the constant function β ≡
(0, 0). More generally, for a clause C we write C⊕k for X(C, k, β) when β ≡ (0, 0).
Also we abbreviate β(xv) by β(v), i.e., we identify the vertices of G with the
variables of Peb(G).

We picture the variables of Peb⊕k(G) as a rectangular matrix, with a column
for every vertex v of G and a row for every index 1 ≤ i ≤ k.

The following lower bound for tree-like resolution is a generalization of the
result of Ben-Sasson et al. [3], the proof is an adaptation2 of their proof.

Theorem 5. For every pointed dag G = (V,E) and every β : V → {0, 1}2,
tree-like resolution refutations of Peb⊕2

β (G) require size 2Ω(peb(G)−b), where b is
the number of v ∈ V with β0(v) = 1.

Proof. Let R be a tree-like resolution refutation of Peb⊕2
β (G), we show that

|R| ≥ 2peb(G)−b−2 − 1.
To that end, we define a sequence C0, C1, . . . , Ch of clauses in R, with C0 = 0

and Ci+1 one of the predecessors of Ci for every i < h, and Ch a leaf, i.e.,
an axiom from Peb⊕2

β (G), together with an increasing sequence of restrictions
ρ0 ⊆ ρ1 ⊆ . . . ⊆ ρh such that Cidρi = 0 for every i ≤ h, and sets S0, S1, . . . , Sh
and T0, T1, . . . , Th with Si ∩ Ti = ∅.

We let S0 be the set of sources in G and T0 = {t} where t is the sink of G,
and ρ0 = ∅. Now assume Ci, ρi, Si and Ti are defined, and assume that Ci is
derived from Di∨x and D′i∨x̄, where x is a variable xv,ε for v ∈ V and ε ∈ {1, 2}.
Let ε̄ := 3− ε so that xv,ε̄ is the other variable in column v.

We define Ci+1, ρi+1, Si+1 and Ti+1 by distinguishing cases, where in each
case, ρi+1 is obtained from ρi by specifying the value for the variable xv,ε.

– Case 1a: v ∈ Ti, and β0(v) = 1 or xv,ε̄ /∈ dom ρi.
Set ρi+1(xv,ε) = β1(v), Si+1 = Si and Ti+1 = Ti.

– Case 1b: v ∈ Ti and xv,ε̄ ∈ dom ρi.
Set ρi+1(xv,ε) = ρi(xv,ε̄)⊕ β1(v), Si+1 = Si and Ti+1 = Ti.

– Case 2a: v ∈ Si, and β0(v) = 1 or xv,ε̄ /∈ dom ρi.
Set ρi+1(xv,ε) = β1(v)⊕ 1, Si+1 = Si and Ti+1 = Ti.

– Case 2b: v ∈ Si and xv,ε̄ ∈ dom ρi.
Set ρi+1(xv,ε) = ρi(xv,ε̄)⊕ β1(v)⊕ 1, Si+1 = Si and Ti+1 = Ti.

– Case 3: v /∈ Si ∪ Ti and peb(G,Si, Ti ∪ {v}) = peb(G,Si, Ti).
Set ρi+1(xv,ε) = β1(v), Si+1 = Si and Ti+1 = Ti ∪ {v}.

– Case 4a: v /∈ Si ∪Ti and peb(G,Si, Ti ∪{v}) < peb(G,Si, Ti) and β0(v) = 1.
Set ρi+1(xv,ε) = β1(v)⊕ 1, Si+1 = Si ∪ {v} and Ti+1 = Ti.

In all these cases 1a - 4a, define Ci+1 to be the parent clause of Ci that is falsified
by ρi+1.

2 Urquhart [16] claims that a lower bound for tree-like resolution refutations of
Peb⊕2(G) can be obtained by imitating the proof of Ben-Sasson et al. [3] “almost
word for word”. We found however that it requires some subtle modifications even
for the non-generalized case.



– Case 4b: v /∈ Si∪Ti and peb(G,Si, Ti∪{v}) < peb(G,Si, Ti) and β0(v) = 0.
Choose Ci+1 as that parent clause of Ci s.t. the subtree rooted at Ci+1 is
the smaller among the two, and set a value of ρi+1(xv,ε) such that Ci+1 is
falsified by ρi+1. Moreover, let Si+1 = Si ∪ {v} and Ti+1 = Ti.

In the following, we denote X(xv, 2, β) by x⊕v , i.e., x⊕v = xv,1 ⊕ xv,2 ⊕ β1(v)
if β0(v) = 0 and x⊕v = xv,1 ⊕ β1(v) if β0(v) = 1.

Claim. If ρi(x
⊕
v ) = 0, then v ∈ Ti.

If the assumption of the claim holds, then in the case β0(v) = 1, the value of
xv,1 must have been set in case 1a or in case 3. In either case v ∈ Ti.

In the case β0(v) = 0, the variable among xv,ε and xv,ε̄ whose value was set
later, must have been set by Case 1b, and hence v ∈ Ti.

Claim. If ρi(x
⊕
v ) = 1, then v ∈ Si.

The proof is similar to that of the previous claim.
It follows that Ch is not a clause from a target axiom X(x̄t, k, β). If this were

the case, then ρh(x⊕t ) = 1, and hence t ∈ Sh by the claim above, whereas we
have t ∈ T0 ⊆ Th and Sh ∩ Th = ∅. By analogous reasoning, Ch cannot be a
clause from a source axiom X(xs, k, β) for a source s of G.

For i ≤ h, let bi be the number of v ∈ V with β0(v) = 1 such that xv,1 ∈
dom ρi.

Claim. For every i ≤ h, the size si of the subtree of R rooted at Ci is at least
si ≥ 2peb(G,Si,Ti)−bh+bi−2 − 1.

The claim is proven by induction on i, downward from h to 0.
By the considerations above, Ch must be a clause from X(x̄u ∨ x̄v ∨ xw, 2, β)

for some w ∈ V with predecessors u and v. Therefore ρh(x⊕u ) = ρh(x⊕v ) = 1,
so u, v ∈ Sh by the claim above, and ρh(x⊕w) = 0, and thus w ∈ Th. We get
peb(G,Sh, Th) = 3, and hence sh = 1 = 2peb(G,Sh,Th)−bh+bh−2 − 1, which shows
the induction base for i = h.

Assume the claimed lower bound holds for si+1. Since si is the size of the
tree rooted at Ci, which contains the subtree rooted at Ci+1 of size si+1, we
obviously have si ≥ si+1.

If Ci+1 is defined by one of the cases 1a through 3, then peb(G,Si+1, Ti+1) =
peb(G,Si, Ti) and bi+1 ≥ bi , and thus

si ≥ si+1 ≥ 2peb(G,Si+1,Ti+1)−bh+bi+1−2 − 1 ≥ 2peb(G,Si,Ti)−bh+bi−2 − 1 ,

which shows the claim for si.
If Ci+1 was defined using case 4a, then we have

peb(G,Si+1, Ti+1) ≥ peb(G,Si, Ti)− 1

by Lemma 3, and bi+1 = bi + 1, thus we get

si ≥ si+1 ≥ 2peb(G,Si+1,Ti+1)−bh+bi+1−2 − 1 ≥ 2peb(G,Si,Ti)−1−bh+bi+1−2 − 1 ,



which shows the claim for si.
If Ci+1 was defined using case 4b, then we have

peb(G,Si+1, Ti+1) ≥ peb(G,Si, Ti)− 1

by Lemma 3 again, and bi+1 = bi, therefore we obtain

si ≥ 2si+1 + 1 ≥ 2peb(G,Si+1,Ti+1)−bh+bi+1−2 − 1 ≥ 2peb(G,Si,Ti)−bh+bi−2 − 1 ,

which shows the claim for si.
The theorem follows, since we have |R| = s0, and b0 = 0, and bh ≤ b, and

peb(G,S0, T0) = peb(G). ut

7 The Lower Bound

We will now prove one half of our main result, a lower bound on the size of
RTL(k)-refutation of the (k + 1)-fold xorification of the pebbling formulas.

Theorem 6. For a pointed dag G, every RTL(k)-refutation of Peb⊕(k+1)(G)
requires size 2Ω(peb(G)).

Proof. Let R be an RTL(k)-refutation of F := Peb⊕(k+1)(G). Note that every
clause in F is of width at least k+1. Let C be the first clause in R with w(C) ≤ k,
so that C could possibly be used as a lemma. Then the subtree RC of R rooted
at C is a tree-like resolution derivation of C from F .

Let ρ be the smallest restriction with Cdρ = 0, and note that |ρ| ≤ k. Recall
that we picture the variables of Peb⊕k(G) as arranged in a rectangular matrix,
with a column for every vertex v of G and a row for every index 1 ≤ i ≤ k.
There are two cases: either the variables set by ρ are all in the same column, or
ρ sets variables from at least two different columns.

In the latter case, there are at most k− 1 rows set in every column, thus for
each column v there are two rows i(v) and i′(v) such that xv,i(v) and xv,i′(v) are
not set by ρ. In this case, we can set all but these two rows in every column,
i.e., extend ρ to a restriction ρ∗ by setting ρ∗(xv,j) = 0 for every variable xv,j /∈
dom ρ with j /∈ {i(v), i′(v)}. Define β0(v) = 0 for every v ∈ V , and β1(v) :=⊕

j /∈{i(v),i′(v)} ρ
∗(xv,j).

In the first case, let v be the column containing all variables set by ρ. If
there are fewer than k variables set, then we can proceed as in the other case.
Otherwise, there is one row i such that xv,j is set by ρ for all j 6= i. In this
case, we set all but two rows in every other column, and in column v only one
variable remains. Thus we pick a row i′ with i′ 6= i arbitrarily, and extend ρ
to a restriction ρ∗ by setting ρ∗(xu,j) = 0 for every column u 6= v and row
j /∈ {i, i′}. Set β0(v) = 1 and β1(v) =

⊕
j 6=i ρ(xv,j) for the vertex v, and for all

other vertices u 6= v, set β0(u) = 0 and β1(u) = 0.
In both cases, for the so defined function β we have F dρ∗ ≡ Peb⊕2

β (G) after
a renaming of the variables that changes only the numbering of the rows.

Thus in both cases RCdρ∗ is a tree-like resolution refutation of Peb⊕2
β (G), and

the number b of v ∈ V with β0(v) = 1 is at most 1, therefore |RC | ≥ 2Ω(peb(G))

by Theorem 5. The size lower bound for R follows. ut



8 The Upper Bound

We now prove the remaining half of our result, the upper bound.

Theorem 7. For every pointed dag G with n vertices, the formulas Peb⊕k(G)
have regular RTL(k)-refutations of size O(23kn).

Proof. Fix a topological ordering ≺ of G, and let S be the set of sources of G.
We first show the following claim:

Claim. Let w ∈ V with predecessors u and v, where u ≺ v. For every clause C in
x⊕kw , there is a tree-like regular resolution derivation of C from x⊕ku and x⊕kv and
(x̄u ∨ x̄v ∨ xw)⊕k of size O(22k). Moreover, in this derivation only the variables
from columns u and v are eliminated, and on every path from a leaf labeled with
a clause from x⊕kv to C, only the variables from column v are eliminated.

Proof. Take a regular tree-like resolution refutation Rv of x⊕kv and x̄⊕kv , of size
O(2k). Add the clause C to every clause in Rv except the leaves from x⊕kv . This
yields a derivation R′v of C from x⊕kv and x̄⊕kv ∨ C.

Now take a regular tree-like resolution refutation Ru of x⊕ku and x̄⊕ku , of size
O(2k). For every clause C ′ in x̄⊕kv ∨ C, take a copy of Ru, and add C ′ to every
clause in it except the leaves from x⊕ku . Replace the leaf in R′v labeled C ′ by the
result. This gives the desired derivation and thus proves the claim. ut

To prove the theorem, we construct a sequence R1, . . . , R` of partial reso-
lution trees with lemmas, in which some leaves are labeled by clauses that are
not axioms or lemmas derived earlier, these are called the open leaves. In addi-
tion, we define a sequence U1, . . . , U` of subsets of V \S, such that the following
invariants hold:

– The open leaves in Ri are all among the clauses from xu,1⊕ . . .⊕xu,k for an
u ∈ Ui.

– On the path from an open leaf with a clause from xu,1 ⊕ . . . ⊕ xu,k to the
root, all variables resolved are from a column v ∈ V with u � v.

Let R1 be a tree-like regular resolution refutation of the clauses from x̄⊕kt ,
which are axioms of Peb⊕k(G), and those from x⊕kt , which are the open leaves
of R1, and let U1 := {t}. Obviously the invariants hold, and the size of R1 is 2k.

Assume we have constructed Ri, we show how to construct Ri+1. Let v
be the maximal element of Ui w.r.t. the ordering ≺, and let u1 and u2 be its
predecessors. For each clause C from x⊕kv , replace its first occurrence in Ri by
the derivation RC of C from x⊕ku1

and x⊕ku2
given by the claim above. The other

occurrences of C will then become lemmas.
Let the result be Ri+1, then the open leaves of Ri+1 are those of Ri without

the clauses from x⊕kv , plus those leaves of RC labeled by clauses from x⊕ku1
and

x⊕ku2
, except when u1 or u2 are sources. Thus if we define Ui+1 := (Ui \ {v}) ∪

({u1, u2} \ S), then the first invariant holds.



Since in a path from an open leaf C of Ri to the root, only variables from
columns w with v � w are eliminated, and in RC only variables from columns
u1 and u2, the second invariant as well as regularity of Ri+1 hold.

For each of the 2k−1 clauses in x⊕kv , we have added one derivation of size 22k,
hence the size of Ri+1 is |Ri+1| ≤ |Ri|+ 23k.

The process terminates after at most n iterations, since max≺ Ui strictly
decreases in every step. Since in R`, there are no open leaves left, it is a regular
RTL-refutation. Since every lemma used is a clause from x⊕kv for some v ∈ V ,
they are of size k, hence R` is a regular RTL(k)-refutation of Peb⊕k(G) of size
23k · n. ut

9 Wrapping Up

Finally, we put everything together to prove the main theorem.

Proof (of Theorem 2). Let F
(k)
n be the formula Peb⊕(k+1)(Gn), where Gn are

the graphs given by Theorem 4 with n vertices and pebbling number peb(Gn) =
Ω(n/ log n). For k = O(log n), these formulas are of polynomial size nO(1).

By Theorem 6, the formulas F
(k)
n require RTL(k)-refutations of exponential

size 2Ω(n/ logn), and by Theorem 7, they have regular RTL(k)-refutations of
polynomial size nO(1). ut

Note that for k larger than O(log n), the formulas Peb⊕(k+1)(Gn) are them-
selves of super-polynomial size in n, and therefore have no proofs of size poly-
nomial in the size of the underlying graph Gn.

10 Conclusion

We have shown that for resolution trees with lemmas – a resolution-based propo-
sitional proof system that forms the basis of a family of proof systems capturing
the complexity of clause-learning algorithms – an increase of one in the width
of clauses that may be used as lemmas can lead to an exponential speed-up.

The lower bounds hold for the strongest form of these proof systems with
no regularity restrictions, and even with the weakening rule. The upper bounds,
on the other hand, are given for a rather weak variant, the given refutations are
regular and do not use any weakenings.

Unfortunately, we cannot immediately conclude an exponential speed-up of
the DPLL algorithm with clause learning with learned clauses of width k + 1
over the version with learned clauses of width k from this. In order for that
conclusion to hold, the upper bound would have to be given for a still weaker
variant of the system, in which only lemmas derived by input resolution can be
used, i.e. a restricted version of WRTI without use of the w-resolution rule and
with lemmas restricted to width k + 1.
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