
The Complexity of Pure Literal Elimination

Jan Johannsen

∗

Ludwig-Maximilians-Universit�at M�unhen

Introduction and Preliminaries

A literal a is pure in a CNF formula F if �a does not our in F. Pure literals

an always be set to true without a�eting satis�ability, whih amounts

to the same as to remove lauses ontaining them. Sine this an lead to

other literals beoming pure, the proess needs to be iterated to obtain a

satis�ability-equivalent formula without any pure literals. This proess is

known as pure literal elimination.

The elimination of pure literals is a ommon heuristi used in many sat-

is�ability algorithms. In partiular it is employed by those baktraking

(DLL-type) algorithms that ahieve the best worst-ase upper bounds for

3-SAT [6, 12℄.

The urrent best implementations of DLL-type SAT solvers, like Cha� [10℄

or BerkMin [1℄ sari�e this heuristi in order to gain eÆieny in unit

propagation. Nevertheless, pure literal elimination beomes essential again

for the eÆient implementation of solvers for quanti�ed boolean formulas

(QBF): it appears to be ruial (aording to Letz [8℄) for the performane

of Semprop [7℄, urrently one of the most eÆient QBF solvers.

We will determine preisely the omputational omplexity of pure literal

elimination for di�erent lasses of formulas. Next to the omplexity lass P

of problems omputable in polynomial time, we will onsider lasses de�ned

by logarithmi spae bounded algorithms employing di�erent forms of non-

determinism. Among these, the lasses L of deterministi and NL of non-

deterministi logarithmi spae are the most familiar ones.

Less known perhaps is the lass SL de�ned by symmetri non-deterministi

logarithmi spae [9℄, whih lies between L and NL. Just as NL exatly ap-

tures the omplexity of the reahability problem in direted graphs, SL is the

∗
Address: Institut f�ur Informatik, Ludwig-Maximilians-Universit�at M�unhen, Oettin-

genstra�e 67, D-80538 M�unhen, Germany. E-mail: jan.johannsen@ifi.lmu.de

1



preise omplexity of reahability in undireted graph, sine this problem

(UGAP) is omplete for SL [5℄.

Our main result shows that the elimination of pure literals is inherently

sequential ; tehnially, this means that it is omplete for P. This means

that there is no hope for eÆient parallel or small-spae implementations of

the heuristi.

For a formula F in CNF, let pl(F) be the formula obtained from F by deleting

all lauses that ontain a pure literal. Let F∗ denote the least �xed point of

this operation, i.e. de�ne

F0 := F Fi+1 := pl(Fi)

F∗ := Fr where r is the least i s.t. Fi = Fi+1 .

This algorithm omputes F∗ in polynomial time, sine the operation pl() is

omputable in logarithmi spae (even in the muh smaller lass AC
0
), and

the number r of iterations is bounded by n.

The following deision problem PL is obviously equivalent to the problem

of omputing F∗:

Given a formula F = C1 ∧ . . . ∧Cm in CNF, and 1 ≤ i ≤ m, does

the lause Ci our in F∗ ?

Therefore, we onentrate on the omplexity of this deision problem. By

the above algorithm, PL is in P. We will study the omplexity of the problem

PL for various lasses of formulas.

For k, ℓ ∈ N, let k-CNF and CNF(ℓ) denote the lasses of formulas in CNF

having at most k literals per lause and at most ℓ ourrenes of eah vari-

ables, respetively. k-CNF(ℓ) denotes the lass of formulas obeying both

restritions.

The omplexity of the satis�ability problem for these lasses is well known:

it is NP-omplete already for 3-CNF(3), but NL-omplete for 2-CNF [5℄ and

L-omplete for CNF(2) [3℄. We will ompletely lassify the omplexity of

the problem PL for these formula lasses.

We show that as in the ase of satis�ability, the problem PL for 3-CNF(3)

is already as hard as possible, in this ase P-omplete. For 2-CNF formulas,

PL is exatly as hard as satis�ability, viz. NL-omplete.

The most unexpeted ase, whih was the starting point of this whole in-

vestigation, is that of CNF(2). It was suggested to the author several times

that the algorithm showing that satis�ability for these formulas is in L [3℄

ould be simpli�ed by �rst eliminating pure literals. This way the algorithm

would only need to work with ordinary graphs instead of the so-alled tagged

2



graphs (see de�nition below.) We show here that this is not an option, sine

removing pure literals from a CNF(2)-formula is atually more omplex than

testing its satis�ability: the problem PL for these formulas is SL-omplete.

The general case

We �rst show that for general formulas in CNF, the problem is P-omplete.

Later we will verify that the redution still works if the numbers of literals

per lause and ourrenes of variables are bounded by 3.

The following problem AGAP, the alternating graph aessibility problem,

is well-known to be P-omplete (f. [2℄):

Given a direted graph G = (V, E) with a partition V = ∀⊎∃, and

verties s, t ∈ V , does Apath(s, t) hold, where the the prediate

Apath(x, y) is indutively de�ned by:

� x = y, or

� y ∈ ∃, and there is a z with (z, y) ∈ E and Apath(x, z), or

� y ∈ ∀, and Apath(x, z) holds for all z with (z, y) ∈ E.

Theorem 1. PL is omplete for P.

Proof. As remarked above, the problem is in P. To show it is hard for P,

we redue AGAP to PL as follows:

For a given instane (G, s, t) of AGAP, we onstrut a formula F(G, s). There

is a variable ye for every edge e ∈ E, a variable xv for every vertex v ∈ ∀,

and variables x1
v, . . . , x

k
v for every vertex v ∈ ∃ of in-degree k.

Let v be a vertex with ingoing edges e1, . . . , ek and outgoing edges e ′
1, . . . e

′
ℓ.

If v ∈ ∀, then there is a lause

Cv = xv ∨ �ye′

1
∨ . . . ∨ �ye′

ℓ

and for eah of the edges ej for 1 ≤ j ≤ k, the lauses

�xv ∨ yej
and yej

.

If v ∈ ∃, then there is a lause

Cv = x1
v ∨ . . . ∨ xk

v ∨ �ye′

1
∨ . . . ∨ �ye′

ℓ

and for eah of the edges ej for 1 ≤ j ≤ k, the lauses

�xj
v ∨ yej

and yej
.

Additionally, the lause Cs ontains a further variable z that does not our

anywhere else.

3



Lemma 2. For every v ∈ V, if Apath(s, v) holds, then Cv /∈ F(G, s)∗.

Proof. We prove by indution along the indutive de�nition of Apath(s, v)

that for every v with Apath(s, v) there is an i suh that v /∈ Fi.

For v = s, the lause Cs does not our in F1 = pl(F), sine it ontains the

pure literal z.

Now let v have predeessors u1, . . . , uk joined to v by edges ej = (uj, v) for

1 ≤ j ≤ k.

If v ∈ ∀, and Apath(s, uj) holds for every j, then by the indution hypothesis

there is an ij suh that Cuj
/∈ Fij for every j. Thus in Fij , the literal yej

is pure, and thus the lause yej
∨ �xv does not our in Fij+1. Thus for

r = max1≤j≤k ij+1, the literal xv is pure in Fr, and hene Cv does not our

in Fr+1.

Similarly, if v ∈ ∃, and Apath(s, uj) holds for some j, then by the indution

hypothesis there is an i suh that Cuj
/∈ Fi. By the same reasoning as in the

previous ase, x
j
v is pure in Fi+1, and hene Cv /∈ Fi+2.

Lemma 3. For every v ∈ V, if Cv /∈ F(G, s)∗, then Apath(s, v) holds.

Proof. Let Cv /∈ F(G, s)∗. We prove the laim by indution on i suh that

v ∈ Fi \ Fi+1. For i = 0, the only lause in F0 \ F1 is Cs, and Apath(s, s)

holds by de�nition, whih gives the base ase.

Let again v have predeessors u1, . . . , uk joined to v by edges ej = (uj, v)

for 1 ≤ j ≤ k, and let Cv ∈ Fi \ Fi+1.

If v ∈ ∀, then xv must be pure in Fi, sine due to the unit lauses yfν
, the

literals �yfν
annot beome pure as long as Cv is present. Thus for eah edge

ej, the lause yej
∨�xv does not our in Fi, and thus for some ij < i, it is in

Fij \ Fij+1. Therefore, yej
is pure in Fij , and hene Cuj

∈ Fi′
j
\ Fi′

j
for some

i ′j < ij. By the indution hypothesis, Apath(s, uj) holds for every j, and

onsequently Apath(s, v) holds as well.

The ase where v ∈ ∃ is similar.

It follow that Apath(s, t) holds i� Ct /∈ F(G, s)∗, and thus the onstrution

redues AGAP to PL.

For a vertex v in a direted graph, let the in-degree in-deg(v) denote the

number of edges going into and the out-degree out-deg(v) the number of

edges leaving v, so that deg v = in-deg v + out-deg v. Observe that the

width of the lause Cv is 1 + out-deg v for v ∈ ∀, and in-deg v + out-deg v

for v ∈ ∃. Also, the number of ourrenes of the variables xv for v ∈ ∀ is

1 + in-deg v, and all other variables our at most 3 times.

4



Thus the redution yields a formula in 3-CNF(3) if the graph G has the

following properties:

� every vertex v has deg v ≤ 3,

� every vertex v has in-deg v ≤ 2 and out-deg v ≤ 2.

It is easily veri�ed that the problem AGAP remains omplete for P for suh

graphs. We an redue the general ase to this speial ase by replaing

eah vertex v with ingoing edges e1, . . . , ek and outgoing edges e ′
1, . . . , e

′
ℓ by

a hain of k + ℓ − 2 verties as follows:

e2

e ′
1

e ′
2

e ′
3

e ′
ℓ

e3

ek

e1

All the k + ℓ − 2 new verties are of the same type as v: if v ∈ ∃, then they

all are in ∃, and if v ∈ ∀, they all are in ∀. Moreover, in the new graph the

vertex s will be the k − 1st

vertex (marked by a dot in the image above) of

the hain orresponding to s in the original graph, and similarly for t.

Corollary 4. PL for 3-CNF(3) formulas is omplete for P.

The case of CNF(2)

A tagged graph G = (V, E, T) is an undireted multigraph (V, E) with a

distinguished set T ⊆ V of verties. We refer to the verties in T as the

tagged verties.

From a formula F ∈ CNF(2), we onstrut a tagged graph G(F) as follows:

� G(F) has a vertex vC for every lause C in F.

� If lauses C and D ontain a pair of omplementary literals x and �x,

then there is an edge ex between vC and vD.

� If C ontains a pure literal, then vC is tagged.

Theorem 5. PL for formulas in CNF(2) is omplete for SL.

5



Proof. Consider a formula F. The graph G(pl(F)) is obtained from G(F) by

removing the tagged verties, and tagging the remaining verties that used

to be their neighbors. Thus, by iterating we see that G(F∗) is obtained by

removing all onneted omponents from G(F) that ontain tagged verties.

Therefore the following algorithm deides PL: given F and a lause C in F,

loop through all tagged verties in G(F) and verify for eah whether it is

onneted to vCi
. This is a logarithmi spae algorithm with an orale for

UGAP, thus PL is in L
SL
, whih is known to be the same as SL [11℄.

To show hardness for SL, we redue UGAP to PL as follows: For an undi-

reted graph G = (V, E), we onstrut a formula F(G) as follows: we in-

trodue one variable xe for every edge e ∈ E, and for eah vertex v ∈ V ,

we onstrut a lause Cv that ontains one literal for eah edge e inident

to v. This literal is xe, if e onnets v to a higher numbered vertex, and

�xe otherwise. Finally we add an additional variable ys to the lause Cs.

Obviously, Ct ∈ F(G)∗ if and only if t is reahable from s.

The case of 2-CNF

RC is the following deision problem:

Given a direted graph G and vertex s in G, is there a yle in

G reahable from s.

This problem is easily seen to be NL-omplete: it is obviously in NL, and

the NL-omplete problem of deiding whether G ontains a yle [4℄ an be

redued to it by adding a new soure s and edges from s to every vertex in

G.

Theorem 6. PL for 2-CNF formulas is NL-omplete.

Proof. We onsider the same direted graph G(F) that is also used in the

NL-algorithm for 2-SAT. It has a vertex va for every literal a, and for every

lause a ∨ b, there are two edges, one from �a to b and one from

�b to a.

Moreover, for eah unit lause a there is an edge from �a to a.

Note that eah ourrene of the omplementary literal �a yields an edge out

of va, therefore the pure literals in F orrespond to sinks in G(F). A literal

beomes a pure in some Fi if all paths starting from va in G(F) end in a

sink, i.e., no yle is reahable from a.

An indution on i shows that this suÆient riterion is also neessary: the

base ase i = 0 is obvious, and for the indution step onsider a that is pure

in Fi for i > 0. Then all literals b ourring together with �a in a lause

must be pure in some Fj for j < i. By the indution hypothesis, every path

6



starting from any of the verties vb for these literals b ends in a sink. Sine

these vb are all the suessors of va, all paths starting from va end in a sink

as well.

Therefore, a lause C does our in F∗ i� no literal in C is pure in some Fi

i� for every literal a in C, a yle is reahable from va in G(F). This an be

tested in nondeterministi logarithmi spae, thus the problem is in NL.

To show it is NL-hard, we redue RC to PL. To this end, we build a formula

F(G) from a direted graph G = (V, E) and s ∈ V , where w.l.og. we assume

that s is a soure, as follows: There is a variable xv for every vertex v ∈ V ,

and for every edge (u, v) ∈ E we add a lause �xu ∨ xv. Moreover, we add a

unit lause xu for every soure u in G. Thus the only pure literals in F(G)

are xv for the sinks v in G. As above, it follows that the unit lause xs

ours in F(G)∗ if and only if a yle is reahable from s in G.

References

[1℄ E. Goldberg and Y. Novikov. BerkMin: A fast and robust SAT-solver.

In Design, Automation, and Test in Europe (DATE '02), pages

142{149, Mar. 2002.

[2℄ R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. Limits to Parallel

Computation. Oxford University Press, 1995.

[3℄ J. Johannsen. Satis�ability problems omplete for deterministi loga-

rithmi spae. In V. Diekert and M. Habib, editors, 21st International

Symposium on Theoretial Aspets of Computer Siene (STACS

2004), Springer LNCS 2996, pages 317{325, 2004.

[4℄ N. D. Jones. Spae bounded reduibility among ombinatorial prob-

lems. Journal of Computer and System Sienes, 11:65{85, 1975.

[5℄ N. D. Jones, Y. E. Lien, and W. T. Laaser. New problems omplete for

nondeterministi log spae. Mathematial Systems Theory, 10:1{17,

1976.

[6℄ O. Kullmann. New methods for 3-SAT deision and worst-ase analysis.

Theoretial Computer Siene, 223(1{2):1{72, July 1999.

[7℄ R. Letz. Lemma and model ahing in deision proedures for quan-

ti�ed boolwan formulas. In U. Egly and C. G. Ferm�uller, editors,

TABLEAUX 2002, pages 160{175. Springer LNAI 2381, 2002.

[8℄ R. Letz. Personal ommuniation, Otober 2004.

7



[9℄ H. R. Lewis and C. H. Papadimitriou. Symmetri spae-bounded om-

putation. Theoretial Computer Siene, 19:161{187, 1982.

[10℄ M. W. Moskewiz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik.

Cha�: Engineering an EÆient SAT Solver. In Proeedings of the 38th

Design Automation Conferene (DAC'01), 2001.

[11℄ N. Nisan and A. Ta-Shma. Symmetri Logspae is losed under om-

plement. Chiago Journal of Theoretial Computer Siene, 1995.

[12℄ I. Shiermeyer. Pure literal lookahead: An O(1.497n) 3-satis�ability

algorithm. In J. Frano, G. Gallo, H. Kleine B�uning, E. Spekenmeyer,

and C. Spera, editors, Workshop on the Satis�ability Problem. Uni-

versit�at zu K�oln, Report No. 96-230, April{May 1996.

8


