The Complexity of Pure Literal Elimination

Jan Johannsen*
Ludwig-Maximilians-Universität München

Introduction and Preliminaries

A literal a is pure in a CNF formula F if \bar{a} does not occur in F. Pure literals can always be set to true without affecting satisfiability, which amounts to the same as to remove clauses containing them. Since this can lead to other literals becoming pure, the process needs to be iterated to obtain a satisfiability-equivalent formula without any pure literals. This process is known as pure literal elimination.
The elimination of pure literals is a common heuristic used in many satisfiability algorithms. In particular it is employed by those backtracking (DLL-type) algorithms that achieve the best worst-case upper bounds for 3-SAT $[6,12]$.
The current best implementations of DLL-type SAT solvers, like Chaff [10] or BerkMin [1] sacrifice this heuristic in order to gain efficiency in unit propagation. Nevertheless, pure literal elimination becomes essential again for the efficient implementation of solvers for quantified boolean formulas (QBF): it appears to be crucial (according to Letz [8]) for the performance of Semprop [7], currently one of the most efficient QBF solvers.
We will determine precisely the computational complexity of pure literal elimination for different classes of formulas. Next to the complexity class P of problems computable in polynomial time, we will consider classes defined by logarithmic space bounded algorithms employing different forms of nondeterminism. Among these, the classes L of deterministic and NL of nondeterministic logarithmic space are the most familiar ones.
Less known perhaps is the class SL defined by symmetric non-deterministic logarithmic space [9], which lies between L and NL. Just as NL exactly captures the complexity of the reachability problem in directed graphs, SL is the

[^0]precise complexity of reachability in undirected graph, since this problem (UGAP) is complete for SL [5].
Our main result shows that the elimination of pure literals is inherently sequential; technically, this means that it is complete for P. This means that there is no hope for efficient parallel or small-space implementations of the heuristic.
For a formula F in CNF, let $\mathrm{pl}(\mathrm{F})$ be the formula obtained from F by deleting all clauses that contain a pure literal. Let F^{*} denote the least fixed point of this operation, i.e. define
\[

$$
\begin{array}{ll}
\mathrm{F}_{0}:=\mathrm{F} & \mathrm{~F}_{i+1}:=\mathrm{pl}\left(\mathrm{~F}_{i}\right) \\
\mathrm{F}^{*}:=\mathrm{F}_{\mathrm{r}} & \text { where } \mathrm{r} \text { is the least } i \text { s.t. } \mathrm{F}_{i}=\mathrm{F}_{i+1} .
\end{array}
$$
\]

This algorithm computes F^{*} in polynomial time, since the operation pl() is computable in logarithmic space (even in the much smaller class $A C^{\circ}$), and the number r of iterations is bounded by n.
The following decision problem PL is obviously equivalent to the problem of computing F^{*} :

Given a formula $F=C_{1} \wedge \ldots \wedge C_{m}$ in CNF, and $1 \leq i \leq m$, does the clause C_{i} occur in F^{*} ?

Therefore, we concentrate on the complexity of this decision problem. By the above algorithm, PL is in P. We will study the complexity of the problem PL for various classes of formulas.
For $k, \ell \in \mathbb{N}$, let k-CNF and $\operatorname{CNF}(\ell)$ denote the classes of formulas in CNF having at most k literals per clause and at most ℓ occurrences of each variables, respectively. $k-\operatorname{CNF}(\ell)$ denotes the class of formulas obeying both restrictions.
The complexity of the satisfiability problem for these classes is well known: it is NP-complete already for 3-CNF(3), but NL-complete for 2-CNF [5] and L-complete for $\operatorname{CNF}(2)$ [3]. We will completely classify the complexity of the problem PL for these formula classes.
We show that as in the case of satisfiability, the problem PL for $3-\operatorname{CNF}(3)$ is already as hard as possible, in this case P-complete. For 2-CNF formulas, PL is exactly as hard as satisfiability, viz. NL-complete.
The most unexpected case, which was the starting point of this whole investigation, is that of $\operatorname{CNF}(2)$. It was suggested to the author several times that the algorithm showing that satisfiability for these formulas is in L [3] could be simplified by first eliminating pure literals. This way the algorithm would only need to work with ordinary graphs instead of the so-called tagged
graphs (see definition below.) We show here that this is not an option, since removing pure literals from a CNF(2)-formula is actually more complex than testing its satisfiability: the problem PL for these formulas is SL-complete.

The general case

We first show that for general formulas in CNF, the problem is P -complete. Later we will verify that the reduction still works if the numbers of literals per clause and occurrences of variables are bounded by 3 .
The following problem AGAP, the alternating graph accessibility problem, is well-known to be P-complete (cf. [2]):

Given a directed graph $G=(V, E)$ with a partition $V=\forall \uplus \exists$, and vertices $s, t \in V$, does $\operatorname{Apath}(s, t)$ hold, where the the predicate $\operatorname{APath}(x, y)$ is inductively defined by:

- $x=y$, or
- $y \in \exists$, and there is a z with $(z, y) \in E$ and $\operatorname{Apath}(x, z)$, or
- $y \in \forall$, and $\operatorname{Apath}(x, z)$ holds for all z with $(z, y) \in E$.

Theorem 1. PL is complete for P.
Proof. As remarked above, the problem is in P . To show it is hard for P , we reduce AGAP to PL as follows:
For a given instance (G, s, t) of AGAP, we construct a formula $F(G, s)$. There is a variable y_{e} for every edge $e \in E$, a variable x_{v} for every vertex $v \in \forall$, and variables $x_{v}^{1}, \ldots, x_{v}^{k}$ for every vertex $v \in \exists$ of in-degree k.
Let v be a vertex with ingoing edges $e_{1}, \ldots, e_{\mathrm{k}}$ and outgoing edges $e_{1}^{\prime}, \ldots e_{\ell}^{\prime}$. If $v \in \forall$, then there is a clause

$$
C_{v}=x_{v} \vee \bar{y}_{e_{1}^{\prime}} \vee \ldots \vee \bar{y}_{e_{\ell}^{\prime}}
$$

and for each of the edges e_{j} for $1 \leq j \leq k$, the clauses

$$
\bar{x}_{v} \vee y_{e_{j}} \text { and } y_{e_{j}} .
$$

If $v \in \exists$, then there is a clause

$$
C_{v}=x_{v}^{1} \vee \ldots \vee x_{v}^{k} \vee \bar{y}_{e_{1}^{\prime}} \vee \ldots \vee \bar{y}_{e_{e}^{\prime}}
$$

and for each of the edges e_{j} for $1 \leq j \leq k$, the clauses

$$
\bar{x}_{v}^{j} \vee y_{e_{j}} \text { and } y_{e_{j}} .
$$

Additionally, the clause C_{s} contains a further variable z that does not occur anywhere else.

Lemma 2. For every $v \in \mathrm{~V}$, if $\operatorname{Apath}(s, v)$ holds, then $\mathrm{C}_{v} \notin \mathrm{~F}(\mathrm{G}, \mathrm{s})^{*}$.
Proof. We prove by induction along the inductive definition of $\operatorname{Apath}(s, v)$ that for every v with $\operatorname{Apath}(s, v)$ there is an i such that $v \notin \mathrm{~F}_{i}$.
For $v=s$, the clause C_{s} does not occur in $\mathrm{F}_{1}=\mathrm{pl}(\mathrm{F})$, since it contains the pure literal z.
Now let v have predecessors u_{1}, \ldots, u_{k} joined to v by edges $e_{j}=\left(u_{j}, v\right)$ for $1 \leq \mathrm{j} \leq \mathrm{k}$.
If $v \in \forall$, and $\operatorname{APath}\left(s, \mathfrak{u}_{\mathfrak{j}}\right)$ holds for every \mathfrak{j}, then by the induction hypothesis there is an i_{j} such that $C_{u_{j}} \notin F_{i_{j}}$ for every j. Thus in $F_{i j}$, the literal $y_{e_{j}}$ is pure, and thus the clause $y_{e_{j}} \vee \bar{x}_{v}$ does not occur in $F_{i_{j}+1}$. Thus for $r=\max _{1 \leq j \leq k} i_{j}+1$, the literal x_{v} is pure in F_{r}, and hence C_{v} does not occur in $\mathrm{F}_{\mathrm{r}+1}$.
Similarly, if $v \in \exists$, and $\operatorname{Apath}\left(s, u_{j}\right)$ holds for some \mathfrak{j}, then by the induction hypothesis there is an i such that $C_{u_{j}} \notin F_{i}$. By the same reasoning as in the previous case, x_{v}^{j} is pure in F_{i+1}, and hence $C_{v} \notin F_{i+2}$.

Lemma 3. For every $v \in \mathrm{~V}$, if $\mathrm{C}_{v} \notin \mathrm{~F}(\mathrm{G}, \mathrm{s})^{*}$, then $\operatorname{Apath}(\mathrm{s}, v)$ holds.
Proof. Let $\mathrm{C}_{v} \notin \mathrm{~F}(\mathrm{G}, \mathrm{s})^{*}$. We prove the claim by induction on i such that $v \in F_{i} \backslash F_{i+1}$. For $i=0$, the only clause in $F_{0} \backslash F_{1}$ is C_{s}, and $\operatorname{Apath}(s, s)$ holds by definition, which gives the base case.
Let again v have predecessors $u_{1}, \ldots, \mathfrak{u}_{k}$ joined to v by edges $e_{j}=\left(u_{j}, v\right)$ for $1 \leq j \leq k$, and let $C_{v} \in F_{i} \backslash F_{i+1}$.
If $v \in \forall$, then x_{v} must be pure in F_{i}, since due to the unit clauses $y_{f_{v}}$, the literals $\bar{y}_{f_{v}}$ cannot become pure as long as C_{v} is present. Thus for each edge e_{j}, the clause $y_{e_{j}} \vee \bar{x}_{v}$ does not occur in F_{i}, and thus for some $i_{j}<i$, it is in $F_{i_{j}} \backslash F_{i_{j}+1}$. Therefore, $y_{e_{j}}$ is pure in $F_{i_{j}}$, and hence $C_{u_{j}} \in F_{i_{j}^{\prime}} \backslash F_{i_{j}^{\prime}}$ for some $\mathfrak{i}_{j}^{\prime}<\mathfrak{i}_{\mathfrak{j}}$. By the induction hypothesis, Apath $\left(s, \mathfrak{u}_{\mathfrak{j}}\right)$ holds for every \mathfrak{j}, and consequently Аратн (s, v) holds as well.
The case where $v \in \exists$ is similar.
It follow that $\operatorname{Apath}(s, t)$ holds iff $C_{t} \notin F(G, s)^{*}$, and thus the construction reduces AGAP to PL.

For a vertex v in a directed graph, let the in-degree in- $\operatorname{deg}(v)$ denote the number of edges going into and the out-degree out-deg (v) the number of edges leaving v, so that $\operatorname{deg} v=\operatorname{in}-\operatorname{deg} v+\operatorname{out}-\operatorname{deg} v$. Observe that the width of the clause C_{v} is $1+$ out- $\operatorname{deg} v$ for $v \in \forall$, and in- $\operatorname{deg} v+$ out-deg v for $v \in \exists$. Also, the number of occurrences of the variables x_{v} for $v \in \forall$ is $1+\operatorname{in}-\operatorname{deg} v$, and all other variables occur at most 3 times.

Thus the reduction yields a formula in 3-CNF(3) if the graph G has the following properties:

- every vertex v has $\operatorname{deg} v \leq 3$,
- every vertex v has in- $\operatorname{deg} v \leq 2$ and out- $\operatorname{deg} v \leq 2$.

It is easily verified that the problem AGAP remains complete for P for such graphs. We can reduce the general case to this special case by replacing each vertex v with ingoing edges e_{1}, \ldots, e_{k} and outgoing edges $e_{1}^{\prime}, \ldots, e_{\ell}^{\prime}$ by a chain of $k+\ell-2$ vertices as follows:

All the $k+\ell-2$ new vertices are of the same type as v : if $v \in \exists$, then they all are in \exists, and if $v \in \forall$, they all are in \forall. Moreover, in the new graph the vertex s will be the $k-1^{\text {st }}$ vertex (marked by a dot in the image above) of the chain corresponding to s in the original graph, and similarly for t.

Corollary 4. PL for 3-CNF(3) formulas is complete for P.

The case of CNF (2)
A tagged graph $G=(\mathrm{V}, \mathrm{E}, \mathrm{T})$ is an undirected multigraph (V, E) with a distinguished set $\mathrm{T} \subseteq \mathrm{V}$ of vertices. We refer to the vertices in T as the tagged vertices.
From a formula $F \in \operatorname{CNF}(2)$, we construct a tagged graph $G(F)$ as follows:

- $G(F)$ has a vertex v_{C} for every clause C in F.
- If clauses C and D contain a pair of complementary literals x and \bar{x}, then there is an edge e_{x} between v_{C} and v_{D}.
- If C contains a pure literal, then v_{C} is tagged.

Theorem 5. PL for formulas in CNF(2) is complete for SL.

Proof. Consider a formula F. The graph $\mathrm{G}(\mathrm{pl}(\mathrm{F}))$ is obtained from $\mathrm{G}(\mathrm{F})$ by removing the tagged vertices, and tagging the remaining vertices that used to be their neighbors. Thus, by iterating we see that $\mathrm{G}\left(\mathrm{F}^{*}\right)$ is obtained by removing all connected components from $G(F)$ that contain tagged vertices. Therefore the following algorithm decides PL: given F and a clause C in F, loop through all tagged vertices in $G(F)$ and verify for each whether it is connected to $v_{C_{i}}$. This is a logarithmic space algorithm with an oracle for UGAP, thus PL is in $\mathrm{L}^{\text {SL }}$, which is known to be the same as SL [11].
To show hardness for SL, we reduce UGAP to PL as follows: For an undirected graph $G=(V, E)$, we construct a formula $F(G)$ as follows: we introduce one variable x_{e} for every edge $e \in E$, and for each vertex $v \in V$, we construct a clause C_{v} that contains one literal for each edge e incident to v. This literal is x_{e}, if e connects v to a higher numbered vertex, and \bar{x}_{e} otherwise. Finally we add an additional variable y_{s} to the clause C_{s}. Obviously, $C_{t} \in F(G)^{*}$ if and only if t is reachable from s.

The case of 2-CNF

RC is the following decision problem:
Given a directed graph G and vertex s in G, is there a cycle in G reachable from s.

This problem is easily seen to be NL-complete: it is obviously in NL, and the NL-complete problem of deciding whether G contains a cycle [4] can be reduced to it by adding a new source s and edges from s to every vertex in G.

Theorem 6. PL for 2-CNF formulas is NL-complete.
Proof. We consider the same directed graph $G(F)$ that is also used in the NL-algorithm for 2-SAT. It has a vertex v_{a} for every literal a, and for every clause $a \vee b$, there are two edges, one from \bar{a} to b and one from \bar{b} to a. Moreover, for each unit clause a there is an edge from \bar{a} to a.
Note that each occurrence of the complementary literal \bar{a} yields an edge out of v_{a}, therefore the pure literals in F correspond to sinks in $G(F)$. A literal becomes a pure in some F_{i} if all paths starting from v_{a} in $G(F)$ end in a sink, i.e., no cycle is reachable from a.
An induction on i shows that this sufficient criterion is also necessary: the base case $i=0$ is obvious, and for the induction step consider a that is pure in F_{i} for $i>0$. Then all literals b occurring together with \bar{a} in a clause must be pure in some F_{j} for $j<i$. By the induction hypothesis, every path
starting from any of the vertices v_{b} for these literals b ends in a sink. Since these v_{b} are all the successors of v_{a}, all paths starting from v_{a} end in a sink as well.
Therefore, a clause C does occur in F^{*} iff no literal in C is pure in some F_{i} iff for every literal a in C, a cycle is reachable from v_{a} in $G(F)$. This can be tested in nondeterministic logarithmic space, thus the problem is in NL.
To show it is NL-hard, we reduce RC to PL. To this end, we build a formula $F(G)$ from a directed graph $G=(V, E)$ and $s \in V$, where w.l.og. we assume that s is a source, as follows: There is a variable x_{v} for every vertex $v \in \mathrm{~V}$, and for every edge $(u, v) \in E$ we add a clause $\bar{x}_{\mathfrak{u}} \vee x_{v}$. Moreover, we add a unit clause x_{u} for every source u in G. Thus the only pure literals in $F(G)$ are x_{v} for the sinks v in G. As above, it follows that the unit clause x_{s} occurs in $\mathrm{F}(\mathrm{G})^{*}$ if and only if a cycle is reachable from s in G.

References

[1] E. Goldberg and Y. Novikov. BerkMin: A fast and robust SAT-solver. In Design, Automation, and Test in Europe (DATE '02), pages 142-149, Mar. 2002.
[2] R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. Limits to Parallel Computation. Oxford University Press, 1995.
[3] J. Johannsen. Satisfiability problems complete for deterministic logarithmic space. In V. Diekert and M. Habib, editors, 21st International Symposium on Theoretical Aspects of Computer Science (STACS 2004), Springer LNCS 2996, pages 317-325, 2004.
[4] N. D. Jones. Space bounded reducibility among combinatorial problems. Journal of Computer and System Sciences, 11:65-85, 1975.
[5] N. D. Jones, Y. E. Lien, and W. T. Laaser. New problems complete for nondeterministic log space. Mathematical Systems Theory, 10:1-17, 1976.
[6] O. Kullmann. New methods for 3-SAT decision and worst-case analysis. Theoretical Computer Science, 223(1-2):1-72, July 1999.
[7] R. Letz. Lemma and model caching in decision procedures for quantified boolwan formulas. In U. Egly and C. G. Fermüller, editors, TABLEAUX 2002, pages 160-175. Springer LNAI 2381, 2002.
[8] R. Letz. Personal communication, October 2004.
[9] H. R. Lewis and C. H. Papadimitriou. Symmetric space-bounded computation. Theoretical Computer Science, 19:161-187, 1982.
[10] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an Efficient SAT Solver. In Proceedings of the 38th Design Automation Conference (DAC'01), 2001.
[11] N. Nisan and A. Ta-Shma. Symmetric Logspace is closed under complement. Chicago Journal of Theoretical Computer Science, 1995.
[12] I. Schiermeyer. Pure literal lookahead: An $\mathrm{O}\left(1.497^{n}\right)$ 3-satisfiability algorithm. In J. Franco, G. Gallo, H. Kleine Büning, E. Speckenmeyer, and C. Spera, editors, Workshop on the Satisfiability Problem. Universität zu Köln, Report No. 96-230, April-May 1996.

[^0]: *Address: Institut für Informatik, Ludwig-Maximilians-Universität München, Oettingenstraße 67, D-80538 München, Germany. E-mail: jan.johannsen@ifi.lmu.de

