
The Complexity of Pure Literal Elimination

Jan Johannsen

∗

Ludwig-Maximilians-Universit�at M�un
hen

Introduction and Preliminaries

A literal a is pure in a CNF formula F if �a does not o

ur in F. Pure literals


an always be set to true without a�e
ting satis�ability, whi
h amounts

to the same as to remove 
lauses 
ontaining them. Sin
e this 
an lead to

other literals be
oming pure, the pro
ess needs to be iterated to obtain a

satis�ability-equivalent formula without any pure literals. This pro
ess is

known as pure literal elimination.

The elimination of pure literals is a 
ommon heuristi
 used in many sat-

is�ability algorithms. In parti
ular it is employed by those ba
ktra
king

(DLL-type) algorithms that a
hieve the best worst-
ase upper bounds for

3-SAT [6, 12℄.

The 
urrent best implementations of DLL-type SAT solvers, like Cha� [10℄

or BerkMin [1℄ sa
ri�
e this heuristi
 in order to gain eÆ
ien
y in unit

propagation. Nevertheless, pure literal elimination be
omes essential again

for the eÆ
ient implementation of solvers for quanti�ed boolean formulas

(QBF): it appears to be 
ru
ial (a

ording to Letz [8℄) for the performan
e

of Semprop [7℄, 
urrently one of the most eÆ
ient QBF solvers.

We will determine pre
isely the 
omputational 
omplexity of pure literal

elimination for di�erent 
lasses of formulas. Next to the 
omplexity 
lass P

of problems 
omputable in polynomial time, we will 
onsider 
lasses de�ned

by logarithmi
 spa
e bounded algorithms employing di�erent forms of non-

determinism. Among these, the 
lasses L of deterministi
 and NL of non-

deterministi
 logarithmi
 spa
e are the most familiar ones.

Less known perhaps is the 
lass SL de�ned by symmetri
 non-deterministi


logarithmi
 spa
e [9℄, whi
h lies between L and NL. Just as NL exa
tly 
ap-

tures the 
omplexity of the rea
hability problem in dire
ted graphs, SL is the

∗
Address: Institut f�ur Informatik, Ludwig-Maximilians-Universit�at M�un
hen, Oettin-

genstra�e 67, D-80538 M�un
hen, Germany. E-mail: jan.johannsen@ifi.lmu.de

1



pre
ise 
omplexity of rea
hability in undire
ted graph, sin
e this problem

(UGAP) is 
omplete for SL [5℄.

Our main result shows that the elimination of pure literals is inherently

sequential ; te
hni
ally, this means that it is 
omplete for P. This means

that there is no hope for eÆ
ient parallel or small-spa
e implementations of

the heuristi
.

For a formula F in CNF, let pl(F) be the formula obtained from F by deleting

all 
lauses that 
ontain a pure literal. Let F∗ denote the least �xed point of

this operation, i.e. de�ne

F0 := F Fi+1 := pl(Fi)

F∗ := Fr where r is the least i s.t. Fi = Fi+1 .

This algorithm 
omputes F∗ in polynomial time, sin
e the operation pl() is


omputable in logarithmi
 spa
e (even in the mu
h smaller 
lass AC
0
), and

the number r of iterations is bounded by n.

The following de
ision problem PL is obviously equivalent to the problem

of 
omputing F∗:

Given a formula F = C1 ∧ . . . ∧Cm in CNF, and 1 ≤ i ≤ m, does

the 
lause Ci o

ur in F∗ ?

Therefore, we 
on
entrate on the 
omplexity of this de
ision problem. By

the above algorithm, PL is in P. We will study the 
omplexity of the problem

PL for various 
lasses of formulas.

For k, ℓ ∈ N, let k-CNF and CNF(ℓ) denote the 
lasses of formulas in CNF

having at most k literals per 
lause and at most ℓ o

urren
es of ea
h vari-

ables, respe
tively. k-CNF(ℓ) denotes the 
lass of formulas obeying both

restri
tions.

The 
omplexity of the satis�ability problem for these 
lasses is well known:

it is NP-
omplete already for 3-CNF(3), but NL-
omplete for 2-CNF [5℄ and

L-
omplete for CNF(2) [3℄. We will 
ompletely 
lassify the 
omplexity of

the problem PL for these formula 
lasses.

We show that as in the 
ase of satis�ability, the problem PL for 3-CNF(3)

is already as hard as possible, in this 
ase P-
omplete. For 2-CNF formulas,

PL is exa
tly as hard as satis�ability, viz. NL-
omplete.

The most unexpe
ted 
ase, whi
h was the starting point of this whole in-

vestigation, is that of CNF(2). It was suggested to the author several times

that the algorithm showing that satis�ability for these formulas is in L [3℄


ould be simpli�ed by �rst eliminating pure literals. This way the algorithm

would only need to work with ordinary graphs instead of the so-
alled tagged

2



graphs (see de�nition below.) We show here that this is not an option, sin
e

removing pure literals from a CNF(2)-formula is a
tually more 
omplex than

testing its satis�ability: the problem PL for these formulas is SL-
omplete.

The general case

We �rst show that for general formulas in CNF, the problem is P-
omplete.

Later we will verify that the redu
tion still works if the numbers of literals

per 
lause and o

urren
es of variables are bounded by 3.

The following problem AGAP, the alternating graph a

essibility problem,

is well-known to be P-
omplete (
f. [2℄):

Given a dire
ted graph G = (V, E) with a partition V = ∀⊎∃, and

verti
es s, t ∈ V , does Apath(s, t) hold, where the the predi
ate

Apath(x, y) is indu
tively de�ned by:

� x = y, or

� y ∈ ∃, and there is a z with (z, y) ∈ E and Apath(x, z), or

� y ∈ ∀, and Apath(x, z) holds for all z with (z, y) ∈ E.

Theorem 1. PL is 
omplete for P.

Proof. As remarked above, the problem is in P. To show it is hard for P,

we redu
e AGAP to PL as follows:

For a given instan
e (G, s, t) of AGAP, we 
onstru
t a formula F(G, s). There

is a variable ye for every edge e ∈ E, a variable xv for every vertex v ∈ ∀,

and variables x1
v, . . . , x

k
v for every vertex v ∈ ∃ of in-degree k.

Let v be a vertex with ingoing edges e1, . . . , ek and outgoing edges e ′
1, . . . e

′
ℓ.

If v ∈ ∀, then there is a 
lause

Cv = xv ∨ �ye′

1
∨ . . . ∨ �ye′

ℓ

and for ea
h of the edges ej for 1 ≤ j ≤ k, the 
lauses

�xv ∨ yej
and yej

.

If v ∈ ∃, then there is a 
lause

Cv = x1
v ∨ . . . ∨ xk

v ∨ �ye′

1
∨ . . . ∨ �ye′

ℓ

and for ea
h of the edges ej for 1 ≤ j ≤ k, the 
lauses

�xj
v ∨ yej

and yej
.

Additionally, the 
lause Cs 
ontains a further variable z that does not o

ur

anywhere else.

3



Lemma 2. For every v ∈ V, if Apath(s, v) holds, then Cv /∈ F(G, s)∗.

Proof. We prove by indu
tion along the indu
tive de�nition of Apath(s, v)

that for every v with Apath(s, v) there is an i su
h that v /∈ Fi.

For v = s, the 
lause Cs does not o

ur in F1 = pl(F), sin
e it 
ontains the

pure literal z.

Now let v have prede
essors u1, . . . , uk joined to v by edges ej = (uj, v) for

1 ≤ j ≤ k.

If v ∈ ∀, and Apath(s, uj) holds for every j, then by the indu
tion hypothesis

there is an ij su
h that Cuj
/∈ Fij for every j. Thus in Fij , the literal yej

is pure, and thus the 
lause yej
∨ �xv does not o

ur in Fij+1. Thus for

r = max1≤j≤k ij+1, the literal xv is pure in Fr, and hen
e Cv does not o

ur

in Fr+1.

Similarly, if v ∈ ∃, and Apath(s, uj) holds for some j, then by the indu
tion

hypothesis there is an i su
h that Cuj
/∈ Fi. By the same reasoning as in the

previous 
ase, x
j
v is pure in Fi+1, and hen
e Cv /∈ Fi+2.

Lemma 3. For every v ∈ V, if Cv /∈ F(G, s)∗, then Apath(s, v) holds.

Proof. Let Cv /∈ F(G, s)∗. We prove the 
laim by indu
tion on i su
h that

v ∈ Fi \ Fi+1. For i = 0, the only 
lause in F0 \ F1 is Cs, and Apath(s, s)

holds by de�nition, whi
h gives the base 
ase.

Let again v have prede
essors u1, . . . , uk joined to v by edges ej = (uj, v)

for 1 ≤ j ≤ k, and let Cv ∈ Fi \ Fi+1.

If v ∈ ∀, then xv must be pure in Fi, sin
e due to the unit 
lauses yfν
, the

literals �yfν

annot be
ome pure as long as Cv is present. Thus for ea
h edge

ej, the 
lause yej
∨�xv does not o

ur in Fi, and thus for some ij < i, it is in

Fij \ Fij+1. Therefore, yej
is pure in Fij , and hen
e Cuj

∈ Fi′
j
\ Fi′

j
for some

i ′j < ij. By the indu
tion hypothesis, Apath(s, uj) holds for every j, and


onsequently Apath(s, v) holds as well.

The 
ase where v ∈ ∃ is similar.

It follow that Apath(s, t) holds i� Ct /∈ F(G, s)∗, and thus the 
onstru
tion

redu
es AGAP to PL.

For a vertex v in a dire
ted graph, let the in-degree in-deg(v) denote the

number of edges going into and the out-degree out-deg(v) the number of

edges leaving v, so that deg v = in-deg v + out-deg v. Observe that the

width of the 
lause Cv is 1 + out-deg v for v ∈ ∀, and in-deg v + out-deg v

for v ∈ ∃. Also, the number of o

urren
es of the variables xv for v ∈ ∀ is

1 + in-deg v, and all other variables o

ur at most 3 times.

4



Thus the redu
tion yields a formula in 3-CNF(3) if the graph G has the

following properties:

� every vertex v has deg v ≤ 3,

� every vertex v has in-deg v ≤ 2 and out-deg v ≤ 2.

It is easily veri�ed that the problem AGAP remains 
omplete for P for su
h

graphs. We 
an redu
e the general 
ase to this spe
ial 
ase by repla
ing

ea
h vertex v with ingoing edges e1, . . . , ek and outgoing edges e ′
1, . . . , e

′
ℓ by

a 
hain of k + ℓ − 2 verti
es as follows:

e2

e ′
1

e ′
2

e ′
3

e ′
ℓ

e3

ek

e1

All the k + ℓ − 2 new verti
es are of the same type as v: if v ∈ ∃, then they

all are in ∃, and if v ∈ ∀, they all are in ∀. Moreover, in the new graph the

vertex s will be the k − 1st

vertex (marked by a dot in the image above) of

the 
hain 
orresponding to s in the original graph, and similarly for t.

Corollary 4. PL for 3-CNF(3) formulas is 
omplete for P.

The case of CNF(2)

A tagged graph G = (V, E, T) is an undire
ted multigraph (V, E) with a

distinguished set T ⊆ V of verti
es. We refer to the verti
es in T as the

tagged verti
es.

From a formula F ∈ CNF(2), we 
onstru
t a tagged graph G(F) as follows:

� G(F) has a vertex vC for every 
lause C in F.

� If 
lauses C and D 
ontain a pair of 
omplementary literals x and �x,

then there is an edge ex between vC and vD.

� If C 
ontains a pure literal, then vC is tagged.

Theorem 5. PL for formulas in CNF(2) is 
omplete for SL.

5



Proof. Consider a formula F. The graph G(pl(F)) is obtained from G(F) by

removing the tagged verti
es, and tagging the remaining verti
es that used

to be their neighbors. Thus, by iterating we see that G(F∗) is obtained by

removing all 
onne
ted 
omponents from G(F) that 
ontain tagged verti
es.

Therefore the following algorithm de
ides PL: given F and a 
lause C in F,

loop through all tagged verti
es in G(F) and verify for ea
h whether it is


onne
ted to vCi
. This is a logarithmi
 spa
e algorithm with an ora
le for

UGAP, thus PL is in L
SL
, whi
h is known to be the same as SL [11℄.

To show hardness for SL, we redu
e UGAP to PL as follows: For an undi-

re
ted graph G = (V, E), we 
onstru
t a formula F(G) as follows: we in-

trodu
e one variable xe for every edge e ∈ E, and for ea
h vertex v ∈ V ,

we 
onstru
t a 
lause Cv that 
ontains one literal for ea
h edge e in
ident

to v. This literal is xe, if e 
onne
ts v to a higher numbered vertex, and

�xe otherwise. Finally we add an additional variable ys to the 
lause Cs.

Obviously, Ct ∈ F(G)∗ if and only if t is rea
hable from s.

The case of 2-CNF

RC is the following de
ision problem:

Given a dire
ted graph G and vertex s in G, is there a 
y
le in

G rea
hable from s.

This problem is easily seen to be NL-
omplete: it is obviously in NL, and

the NL-
omplete problem of de
iding whether G 
ontains a 
y
le [4℄ 
an be

redu
ed to it by adding a new sour
e s and edges from s to every vertex in

G.

Theorem 6. PL for 2-CNF formulas is NL-
omplete.

Proof. We 
onsider the same dire
ted graph G(F) that is also used in the

NL-algorithm for 2-SAT. It has a vertex va for every literal a, and for every


lause a ∨ b, there are two edges, one from �a to b and one from

�b to a.

Moreover, for ea
h unit 
lause a there is an edge from �a to a.

Note that ea
h o

urren
e of the 
omplementary literal �a yields an edge out

of va, therefore the pure literals in F 
orrespond to sinks in G(F). A literal

be
omes a pure in some Fi if all paths starting from va in G(F) end in a

sink, i.e., no 
y
le is rea
hable from a.

An indu
tion on i shows that this suÆ
ient 
riterion is also ne
essary: the

base 
ase i = 0 is obvious, and for the indu
tion step 
onsider a that is pure

in Fi for i > 0. Then all literals b o

urring together with �a in a 
lause

must be pure in some Fj for j < i. By the indu
tion hypothesis, every path

6



starting from any of the verti
es vb for these literals b ends in a sink. Sin
e

these vb are all the su

essors of va, all paths starting from va end in a sink

as well.

Therefore, a 
lause C does o

ur in F∗ i� no literal in C is pure in some Fi

i� for every literal a in C, a 
y
le is rea
hable from va in G(F). This 
an be

tested in nondeterministi
 logarithmi
 spa
e, thus the problem is in NL.

To show it is NL-hard, we redu
e RC to PL. To this end, we build a formula

F(G) from a dire
ted graph G = (V, E) and s ∈ V , where w.l.og. we assume

that s is a sour
e, as follows: There is a variable xv for every vertex v ∈ V ,

and for every edge (u, v) ∈ E we add a 
lause �xu ∨ xv. Moreover, we add a

unit 
lause xu for every sour
e u in G. Thus the only pure literals in F(G)

are xv for the sinks v in G. As above, it follows that the unit 
lause xs

o

urs in F(G)∗ if and only if a 
y
le is rea
hable from s in G.

References

[1℄ E. Goldberg and Y. Novikov. BerkMin: A fast and robust SAT-solver.

In Design, Automation, and Test in Europe (DATE '02), pages

142{149, Mar. 2002.

[2℄ R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. Limits to Parallel

Computation. Oxford University Press, 1995.

[3℄ J. Johannsen. Satis�ability problems 
omplete for deterministi
 loga-

rithmi
 spa
e. In V. Diekert and M. Habib, editors, 21st International

Symposium on Theoreti
al Aspe
ts of Computer S
ien
e (STACS

2004), Springer LNCS 2996, pages 317{325, 2004.

[4℄ N. D. Jones. Spa
e bounded redu
ibility among 
ombinatorial prob-

lems. Journal of Computer and System S
ien
es, 11:65{85, 1975.

[5℄ N. D. Jones, Y. E. Lien, and W. T. Laaser. New problems 
omplete for

nondeterministi
 log spa
e. Mathemati
al Systems Theory, 10:1{17,

1976.

[6℄ O. Kullmann. New methods for 3-SAT de
ision and worst-
ase analysis.

Theoreti
al Computer S
ien
e, 223(1{2):1{72, July 1999.

[7℄ R. Letz. Lemma and model 
a
hing in de
ision pro
edures for quan-

ti�ed boolwan formulas. In U. Egly and C. G. Ferm�uller, editors,

TABLEAUX 2002, pages 160{175. Springer LNAI 2381, 2002.

[8℄ R. Letz. Personal 
ommuni
ation, O
tober 2004.

7



[9℄ H. R. Lewis and C. H. Papadimitriou. Symmetri
 spa
e-bounded 
om-

putation. Theoreti
al Computer S
ien
e, 19:161{187, 1982.

[10℄ M. W. Moskewi
z, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik.

Cha�: Engineering an EÆ
ient SAT Solver. In Pro
eedings of the 38th

Design Automation Conferen
e (DAC'01), 2001.

[11℄ N. Nisan and A. Ta-Shma. Symmetri
 Logspa
e is 
losed under 
om-

plement. Chi
ago Journal of Theoreti
al Computer S
ien
e, 1995.

[12℄ I. S
hiermeyer. Pure literal lookahead: An O(1.497n) 3-satis�ability

algorithm. In J. Fran
o, G. Gallo, H. Kleine B�uning, E. Spe
kenmeyer,

and C. Spera, editors, Workshop on the Satis�ability Problem. Uni-

versit�at zu K�oln, Report No. 96-230, April{May 1996.

8


