The Complexity of Pure Literal Elimination

Jan Johannsen*
Ludwig-Maximilians-Universitat Miinchen

Introduction and Preliminaries

A literal a is pure in a CNF formula F if d does not occur in F. Pure literals
can always be set to true without affecting satisfiability, which amounts
to the same as to remove clauses containing them. Since this can lead to
other literals becoming pure, the process needs to be iterated to obtain a
satisfiability-equivalent formula without any pure literals. This process is
known as pure literal elimination.

The elimination of pure literals is a common heuristic used in many sat-
isfiability algorithms. In particular it is employed by those backtracking
(DLL-type) algorithms that achieve the best worst-case upper bounds for
3-SAT [6, 12].

The current best implementations of DLL-type SAT solvers, like Chaff [10]
or BerkMin [1] sacrifice this heuristic in order to gain efficiency in unit
propagation. Nevertheless, pure literal elimination becomes essential again
for the efficient implementation of solvers for quantified boolean formulas
(QBF): it appears to be crucial (according to Letz [8]) for the performance
of Semprop [7], currently one of the most efficient QBF solvers.

We will determine precisely the computational complexity of pure literal
elimination for different classes of formulas. Next to the complexity class P
of problems computable in polynomial time, we will consider classes defined
by logarithmic space bounded algorithms employing different forms of non-
determinism. Among these, the classes L of deterministic and NL of non-
deterministic logarithmic space are the most familiar ones.

Less known perhaps is the class SL defined by symmetric non-deterministic
logarithmic space [9], which lies between L and NL. Just as NL exactly cap-
tures the complexity of the reachability problem in directed graphs, SL is the

*Address: Institut fur Informatik, Ludwig-Maximilians-Universitat Minchen, Oettin-
genstrafle 67, D-80538 Miinchen, Germany. E-mail: jan.johannsen@ifi.lmu.de



precise complexity of reachability in undirected graph, since this problem
(UGAP) is complete for SL [5].

Our main result shows that the elimination of pure literals is inherently
sequential; technically, this means that it is complete for P. This means
that there is no hope for efficient parallel or small-space implementations of
the heuristic.

For a formula F in CNF, let pl(F) be the formula obtained from F by deleting
all clauses that contain a pure literal. Let F* denote the least fixed point of
this operation, i.e. define

Fo:=F Fii1:=pl(Fy)
F*:=F, where 1 is the least i s.t. Fy = Fyyq.

This algorithm computes F* in polynomial time, since the operation pl() is
computable in logarithmic space (even in the much smaller class ACO), and
the number r of iterations is bounded by n.

The following decision problem PL is obviously equivalent to the problem
of computing F*:

Given a formula F = CyA...ACy in CNF, and 1 <1 < m, does
the clause C; occur in F* ?

Therefore, we concentrate on the complexity of this decision problem. By
the above algorithm, PL is in P. We will study the complexity of the problem
PL for various classes of formulas.

For k,{ € N, let k-CNF and CNF({) denote the classes of formulas in CNF
having at most k literals per clause and at most £ occurrences of each vari-
ables, respectively. k-CNF({) denotes the class of formulas obeying both
restrictions.

The complexity of the satisfiability problem for these classes is well known:
it is NP-complete already for 3-CNF(3), but NL-complete for 2-CNF [5] and
L-complete for CNF(2) [3]. We will completely classify the complexity of
the problem PL for these formula classes.

We show that as in the case of satisfiability, the problem PL for 3-CNF(3)
is already as hard as possible, in this case P-complete. For 2-CNF formulas,
PL is exactly as hard as satisfiability, viz. NL-complete.

The most unexpected case, which was the starting point of this whole in-
vestigation, is that of CNF(2). It was suggested to the author several times
that the algorithm showing that satisfiability for these formulas is in L [3]
could be simplified by first eliminating pure literals. This way the algorithm
would only need to work with ordinary graphs instead of the so-called tagged



graphs (see definition below.) We show here that this is not an option, since
removing pure literals from a CNF(2)-formula is actually more complex than
testing its satisfiability: the problem PL for these formulas is SL-complete.

The general case

We first show that for general formulas in CNF, the problem is P-complete.
Later we will verify that the reduction still works if the numbers of literals
per clause and occurrences of variables are bounded by 3.

The following problem AGAP, the alternating graph accessibility problem,
is well-known to be P-complete (cf. [2]):

Given a directed graph G = (V, E) with a partition V = Vw3, and
vertices s,t € V, does APATH(s, t) hold, where the the predicate
APATH(x,y) is inductively defined by:

e X =y, or
e y € d, and there is a z with (z,y) € E and APATH(x,z), or
e y €V, and APATH(x, z) holds for all z with (z,y) € E.

Theorem 1. PL s complete for P.

Proof. As remarked above, the problem is in P. To show it is hard for P,
we reduce AGAP to PL as follows:

For a given instance (G, s, t) of AGAP, we construct a formula F(G, s). There
is a variable y, for every edge e € E, a variable x,, for every vertex v € V,

and variables x], ..., x¥ for every vertex v € 3 of in-degree k.

Let v be a vertex with ingoing edges e,. .., ex and outgoing edges e}, ... e.

If v €V, then there is a clause
C, = Xv Ve V... Ve
and for each of the edges e; for 1 <j <k, the clauses
Xy V Ye and Ye; -
If v € 4, then there is a clause
Cyv = X\ V.. VXS Ve V.o Vg
and for each of the edges e; for 1 <j <k, the clauses
i{,vyej and ye, -

Additionally, the clause Cg contains a further variable z that does not occur
anywhere else.



Lemma 2. For every v € V, if APATH(s,Vv) holds, then C, € F(G,s)".

Proof. We prove by induction along the inductive definition of APATH(s,V)
that for every v with APATH(s,Vv) there is an i such that v ¢ F.

For v = s, the clause C4 does not occur in F; = pl(F), since it contains the
pure literal z.

Now let v have predecessors uy, ..., uy joined to v by edges e; = (u;,v) for
1<j<k

If v € ¥, and APATH(s, u;) holds for every j, then by the induction hypothesis
there is an 1i; such that Cy; ¢ Fy for every j. Thus in Fy, the literal y,
is pure, and thus the clause y; Vv X, does not occur in Fy; 7. Thus for
T = maxj<j<x ij+ 1, the literal x,, is pure in F;, and hence C, does not occur
in F-r+] .

Similarly, if v € 3, and APATH(s, u;) holds for some j, then by the induction
hypothesis there is an i such that C,, ¢ F;. By the same reasoning as in the
previous case, va is pure in F;i,q, and hence C,, & F; 5. O

Lemma 3. For everyv eV, if C, ¢ F(G,s)”, then APATH(s,v) holds.

Proof. Let C, ¢ F(G,s)*. We prove the claim by induction on i such that
v € Fy\ Fi;1. For 1 = 0, the only clause in Fy \ F; is Cs, and APATH(s,s)
holds by definition, which gives the base case.

Let again v have predecessors uj,...,ux joined to v by edges e; = (u;,v)
for 1 <j <k, and let C, € F;y\ Fi1.

If v €V, then x, must be pure in F;, since due to the unit clauses y¢, , the
literals §¢, cannot become pure as long as C, is present. Thus for each edge
ej, the clause ye, VX, does not occur in Fy, and thus for some i; <1, it isin
Fi, \ Fy, 11. Therefore, ye,; is pure in F;;, and hence Cy; € Fij/ \ Fij/ for some
i]-’ < ij. By the induction hypothesis, APATH(s,u;) holds for every j, and
consequently APATH(s,v) holds as well.

The case where v € 3 is similar. O

It follow that ApATH(s,t) holds iff C; € F(G,s)*, and thus the construction
reduces AGAP to PL. O

For a vertex v in a directed graph, let the in-degree in-deg(v) denote the
number of edges going into and the out-degree out-deg(v) the number of
edges leaving v, so that degv = in-degv + out-degv. Observe that the
width of the clause C,, is 1 + out-degv for v € V, and in-degv + out-degv
for v € 4. Also, the number of occurrences of the variables x,, for v € V is
1+ in-degv, and all other variables occur at most 3 times.



Thus the reduction yields a formula in 3-CNF(3) if the graph G has the
following properties:

e every vertex v has degv < 3,

e every vertex v has in-degv < 2 and out-degv < 2.

It is easily verified that the problem AGAP remains complete for P for such
graphs. We can reduce the general case to this special case by replacing

each vertex v with ingoing edges ey, ..., ex and outgoing edges e}, ..., e} by
a chain of k + £ — 2 vertices as follows:
61 \ / 64
O O
VAN SN
O O 2
e /N SN
AN /
©—0
ex / N ey

All the k 4+ £ — 2 new vertices are of the same type as v: if v € 3, then they
all are in J, and if v € V, they all are in V. Moreover, in the new graph the
vertex s will be the k — 1°* vertex (marked by a dot in the image above) of
the chain corresponding to s in the original graph, and similarly for t.

Corollary 4. PL for 3-CNF(3) formulas 1s complete for P.

The case of CNF(2)

A tagged graph G = (V,E,T) is an undirected multigraph (V,E) with a
distinguished set T C V of vertices. We refer to the vertices in T as the
tagged vertices.

From a formula F € CNF(2), we construct a tagged graph G(F) as follows:

e G(F) has a vertex v for every clause C in F.

e If clauses C and D contain a pair of complementary literals x and X,
then there is an edge e, between v¢ and vp.

e If C contains a pure literal, then v¢ is tagged.

Theorem 5. PL for formulas tn CNF(2) is complete for SL.



Proof. Consider a formula F. The graph G(pl(F)) is obtained from G(F) by
removing the tagged vertices, and tagging the remaining vertices that used
to be their neighbors. Thus, by iterating we see that G(F*) is obtained by
removing all connected components from G(F) that contain tagged vertices.

Therefore the following algorithm decides PL: given F and a clause C in F,
loop through all tagged vertices in G(F) and verify for each whether it is
connected to vc,. This is a logarithmic space algorithm with an oracle for
UGAP, thus PL is in L5, which is known to be the same as SL [11].

To show hardness for SL, we reduce UGAP to PL as follows: For an undi-
rected graph G = (V,E), we construct a formula F(G) as follows: we in-
troduce one variable x. for every edge e € E, and for each vertex v € V,
we construct a clause C, that contains one literal for each edge e incident
to v. This literal is x., if e connects v to a higher numbered vertex, and
X otherwise. Finally we add an additional variable ys to the clause Cs,.
Obviously, C¢ € F(G)" if and only if t is reachable from s. O

The case of 2-CNF
RC is the following decision problem:

Given a directed graph G and vertex s in G, is there a cycle in
G reachable from s.

This problem is easily seen to be NL-complete: it is obviously in NL, and
the NL-complete problem of deciding whether G contains a cycle [4] can be
reduced to it by adding a new source s and edges from s to every vertex in
G.

Theorem 6. PL for 2-CNF formulas ts NL-complete.

Proof. We consider the same directed graph G(F) that is also used in the
NL-algorithm for 2-SAT. It has a vertex v for every literal a, and for every
clause a v b, there are two edges, one from a to b and one from b to a.
Moreover, for each unit clause a there is an edge from a to a.

Note that each occurrence of the complementary literal a yields an edge out
of v, therefore the pure literals in F correspond to sinks in G(F). A literal
becomes a pure in some F; if all paths starting from v, in G(F) end in a
sink, i.e., no cycle is reachable from a.

An induction on i shows that this sufficient criterion is also necessary: the
base case i = 0 is obvious, and for the induction step consider a that is pure
in F; for 1 > 0. Then all literals b occurring together with a in a clause
must be pure in some F; for j < i. By the induction hypothesis, every path



starting from any of the vertices vy, for these literals b ends in a sink. Since
these vy, are all the successors of v, all paths starting from v, end in a sink
as well.

Therefore, a clause C does occur in F* iff no literal in C is pure in some F;
iff for every literal a in C, a cycle is reachable from v, in G(F). This can be
tested in nondeterministic logarithmic space, thus the problem is in NL.

To show it is NL-hard, we reduce RC to PL. To this end, we build a formula
F(G) from a directed graph G = (V,E) and s € V, where w.l.og. we assume
that s is a source, as follows: There is a variable x,, for every vertex v € V,
and for every edge (u,v) € E we add a clause X, v x,. Moreover, we add a
unit clause x,, for every source u in G. Thus the only pure literals in F(G)
are x, for the sinks v in G. As above, it follows that the unit clause x;
occurs in F(G)” if and only if a cycle is reachable from s in G. O

References

[1] E. Goldberg and Y. Novikov. BerkMin: A fast and robust SAT-solver.
In Design, Automation, and Test in Europe (DATE ’02), pages
142-149, Mar. 2002.

[2] R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. Limits to Parallel
Computation. Oxford University Press, 1995.

[3] J. Johannsen. Satisfiability problems complete for deterministic loga-
rithmic space. In V. Diekert and M. Habib, editors, 21st International
Symposium on Theoretical Aspects of Computer Science (STACS
2004 ), Springer LNCS 2996, pages 317-325, 2004.

[4] N. D. Jones. Space bounded reducibility among combinatorial prob-
lems. Journal of Computer and System Sciences, 11:65-85, 1975.

[6] N. D. Jones, Y. E. Lien, and W. T. Laaser. New problems complete for
nondeterministic log space. Mathematical Systems Theory, 10:1-17,
1976.

[6] O.Kullmann. New methods for 3-SAT decision and worst-case analysis.
Theoretical Computer Science, 223(1-2):1-72, July 1999.

[7] R. Letz. Lemma and model caching in decision procedures for quan-
tified boolwan formulas. In U. Egly and C. G. Fermiiller, editors,
TABLEAUX 2002, pages 160-175. Springer LN AT 2381, 2002.

[8] R. Letz. Personal communication, October 2004.



[9]

[10]

[11]

[12]

H. R. Lewis and C. H. Papadimitriou. Symmetric space-bounded com-
putation. Theoretical Computer Science, 19:161-187, 1982.

M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik.
Chaff: Engineering an Efficient SAT Solver. In Proceedings of the 38th
Design Automation Conference (DAC’01), 2001.

N. Nisan and A. Ta-Shma. Symmetric Logspace is closed under com-
plement. Chicago Journal of Theoretical Computer Science, 1995.

I. Schiermeyer. Pure literal lookahead: An O(1.497™) 3-satisfiability
algorithm. In J. Franco, G. Gallo, H. Kleine Biining, E. Speckenmeyer,
and C. Spera, editors, Workshop on the Satisfiability Problem. Uni-
versitat zu Koln, Report No. 96-230, April-May 1996.



