
Satisfiability Problems Complete for

Deterministic Logarithmic Space

Jan Johannsen

Institut für Informatik
Ludwig-Maximilians-Universität München
jjohanns@informatik.uni-muenchen.de

Abstract. The satisfiability and not-all-equal satisfiability problems for
boolean formulas in CNF with at most two occurrences of each variable
are complete for deterministic logarithmic space.

Introduction

The satisfiability problem (SAT) for formulas of propositional logic in conjunc-
tive normal form (CNF) is the canonical complete problem for the complexity
class NP [1] of nondeterministic polynomial time. Similarly, SAT problems re-
stricted to several subclasses of CNF formulas are complete for smaller complex-
ity classes.

For Horn formulas, i.e., CNF formulas where every clause contains at most
one positive literal, satisfiability is complete for deterministic polynomial time
P [2]. For formulas in 2-CNF, i.e., formulas where every clause contains at most
two literals, satisfiability is complete for nondeterministic logarithmic space NL

[3]. We exhibit the first known natural special cases of SAT that are complete
for deterministic logarithmic space L.

Let CNF(2) be the class of formulas F ∈ CNF such that every variable occurs
at most twice in F , and let SAT(2) be the problem SAT restricted to instances
in CNF(2). It is well-known that SAT(2) can be decided in linear time (see e.g.
the book by Kleine Büning and Lettmann [4]). We will show that SAT(2) is
complete for L.

The not-all-equal-satisfiability problem (NAE-SAT) is a variant of SAT that
is studied in many contexts. Given a formula in CNF, the question is whether
there is a satisfying assignment that also falsifies at least one literal in every
clause.

In general, NAE-SAT is NP-complete for those classes of CNF-formulas for
which also SAT is NP-complete. NAE-SAT restricted to formulas in 2-CNF is
complete for symmetric logarithmic space SL [3, 5]. Recently, Porschen et al.
[6] have shown that NAE-SAT(2), defined analogously to SAT(2), is solvable
in linear time, and is in the parallel complexity class NC, their proof actually
shows it is computable in parallel logarithmic time by a nearly linear number of
processors, and thus is in AC

1. We will show here that NAE-SAT(2) is in, and
in fact complete for L.



It should be noted that our logarithmic space algorithms, in contradistinc-
tion to the algorithms mentioned above, only solve the decision problems SAT(2)
and NAE-SAT(2), they do not give a witnessing assignment in case of a posi-
tive answer. However, after a draft of this paper was circulated, Stephen Cook
(personal communication) and Mark Braverman [7] have given algorithms to
construct satisfying assignments for satisfiable CNF(2)-formulas in logarithmic
space.

It is easily checked that all the reductions we construct can be written as first-
order reductions, given the usual encoding of the problem instances as logical
structures (see Immerman [8] for background on these notions.) Therefore, all
our reductions are uniform AC

0 many-one reductions.

Satisfiability

In this section we show the L-completeness of SAT(2). To this end, we reduce
SAT(2) to a problem on a certain class of graphs:

A tagged graph G = (V, E, T ) is an undirected multigraph (V, E) with a
distinguished set T ⊆ V of vertices. We refer to the vertices in T as the tagged

vertices.

We call a connected component in G tagged, if it contains at least one tagged
vertex, and untagged otherwise.

From a formula F ∈ CNF(2), we construct a tagged graph G(F ) as follows:

– G(F ) has a vertex vC for every clause C in F .

– If clauses C and D contain a pair of complementary literals x and x̄, then
there is an edge ex between vC and vD.

– If C contains a pure literal, i.e., a literal a such that the complementary
literal ā does not occur in F , then vC is tagged.

Note that there can be parallel edges between clauses containing more than one
pair of complementary literals.

The assignment of a value to a variable x in F corresponds to giving the edge
ex in G(F ) a direction, from the clause containing the literal among x, x̄ that
gets the value 1 to the one that gets the value 0. Thus a clause C is satisfied by
an assignment if vC has nonzero outdegree.

Since clauses that contain pure literals can always be satisfied, the following
characterization of satisfiability is rather obvious:

Proposition 1. A formula F ∈ CNF(2) is satisfiable iff the edges in G(F ) can

be directed so that in the resulting directed graph, there is no untagged sink.

This characterization leads us to the following lemma:

Lemma 2. A formula F ∈ CNF(2) is satisfiable iff every connected component

in G(F ) contains a tagged vertex or a cycle.



Proof. It suffices to show that the condition on the right-hand side is equivalent
to the condition from Proposition 1. Since it is obviously necessary, we only need
to show it is sufficient.

Let a connected component C of G(F ) contain a tagged vertex v. Perform
a depth-first-search of C starting from v, and direct every edge in the resulting
tree towards the root v. This way, every vertex in C other than v will have an
outgoing edge, so the only sink is v, which is tagged. The back-edges can be
directed arbitrarily.

If a connected component C contains a cycle v1, v2, . . . , vk, then we direct
the edges around the cycle. To obtain the direction of the other edges, perform
a depth-first-search starting from v1, v2, . . . , vk in order, but during the search
from vi, do not visit the vertices vj for j > i. In the resulting forest, direct as
above all edges in every tree towards the root vi. This way, every vertex in C will
have an outgoing edge, and the remaining edges can be directed arbitrarily. ⊓⊔

In other words, F is unsatisfiable iff G(F ) contains a connected component that
is an untagged tree.

Theorem 3. SAT(2) is in L.

Proof. It suffices to show that the condition in Lemma 2 can be verified in
logarithmic space. We employ a technique that was used by Cook and McKenzie
[9] to test in logarithmic space whether a graph is acyclic.

For a tagged graph G = (V, E, T ), let D(G) :=
{

(v, e) ; e incident on v
}

be
the set of darts of G, i.e., the ends of edges in G. For a dart d = (v, e) ∈ D(G), we
denote v by v(d) and e by e(d). We consider permutations of the set D(G). The
disjoint-cycle representations of the following two permutations can be easily
constructed from G:

ρG is the product of the cycles
(

(v, e1) . . . (v, ek)
)

for every vertex v,
where e1, . . . , ek are all the edges incident on v.
σG is the product of the transpositions

(

(v, e) (u, e)
)

for every edge e,
where e is an edge between vertices u and v.

By a result of Cook and McKenzie [9], from the disjoint-cycle representations
of two permutations, one can compute the representation of their product in
logarithmic space.

Hence we can obtain the disjoint-cycle representation of the product πG =
ρG◦σG. We will show how, using this representation of πG, we can decide whether
G contains a connected component that is an untagged tree.

We start a search from every dart d ∈ D(G). If the search is successful for
every d, then we accept, otherwise we reject.

The search procedure performs two nested walks of the graph along the orbits
of πG. The outer walk is started at w1 := d, then the inner walk is started at
w2 := w1. It repeatedly remembers e′ := e(w2), and then sets w2 := πG(w2),
until either a tagged vertex is found, i.e., v(w2) ∈ T , or the walk returns to w1,
i.e., v(w2) = v(w1). In the first case, the search terminates successfully. In the



second case, the search is successful if the walk did not return to v(w1) through
e(w1), i.e., e′ 6= e(w2).

If none of these cases occur, then the outer walk is continued by updating
w1 := πG(w1). If w1 = d, then the search terminates unsuccessfully, otherwise
the inner walk is started again.

Note that the algorithm only stores two darts and one edge, so it runs in
logarithmic space. The problem is therefore in L, since logarithmic space func-
tions are closed under composition. To verify the correctness of the algorithm,
we need to prove the following claim:

Claim. For every dart d ∈ D(G), the search from d terminates unsuccessfully if
and only if the connected component of G containing v(d) is an untagged tree.

The “if” direction is obvious. For the other direction, we use the following ob-
servation: if for every d′ in the orbit of d, the walk along πG returns to v(d′)
through the edge e(d′), then the component of v(d) is a tree, which is seen as
follows:

If a vertex is reached through the edge e = e1, then the walk will traverse
every other edge leaving v before returning on e. In fact, if

(

(v, e1) (v, e2) . . . (v, ek)
)

is the orbit of (v, e1) in ρG, then the walk will traverse the edges e2, . . . ek in
that order before returning on e1: if ui is the other vertex incident with ei, then
πG

(

(ui, ei)
)

= (v, ei+1).
It follows inductively that the walk visits the entire component of v(d). It

also follows that the component contains no cycle, by the following argument of
Cook and McKenzie [9]:

Let v1, . . . , vk, vk+1 = v1 be a cycle, with edges ei between vi and vi+1, and
with v1 reached first through edge e0. By the above observation, for every i, at
vi+1 the walk would traverse ei+1 before returning on ei. Therefore, the walk
returns through v1 = vk+1 through ek 6= e1, in contradiction to the assumption.

Therefore, if the search from d is unsuccessful, the component of v(d) is a tree,
which is untagged, since the walk would have encountered any tagged vertices
present. ⊓⊔

Let SAT(2)− be the restriction of SAT(2) to instances that contain no pure
literals, and let TF (tree-freeness) denote the following problem:

TF: Given an undirected graph G, does every connected component in
G contain a cycle?

As a consequence of Lemma 2, we obtain the following equivalence:

Proposition 4. SAT(2)− is equivalent to TF.

Proof. One direction is given by the construction above, which produces no
tagged vertices when F contains no pure literals.



For the other direction, we can reverse the reduction as follows: For an undi-
rected graph G = (V, E), we construct a formula F (G) as follows: we introduce
one variable xe for every edge e ∈ E, and for each vertex v ∈ V , we construct a
clause Cv that contains one literal for each edge e incident to v. This literal is
xe, if e connects v to a higher numbered vertex, and x̄e otherwise.

Obviously, F (G) is a formula in CNF(2) with no pure literals, and G(F (G)) =
G, so by Lemma 2, the construction is a reduction from TF to SAT(2)−. ⊓⊔

Proposition 5. TF is L-complete.

Proof. TF is in L by Proposition 4 and Theorem 3. Its L-hardness remains to
be shown.

We reduce the following problem UFA, which is known to be complete for
L [9], to TF: Given an undirected forest G consisting of exactly two trees, and
vertices u and v in G, are u and v in different trees?

The reduction adds two new vertices to G, and connects them both by edges
to u and v, as shown below, giving G′.

vu

Now if u and v are in the same tree, then the other tree is still a tree in G′. If u

and v are on different trees, then G′ has only one connected component, which
contains a cycle. Thus the construction reduces UFA to TF. ⊓⊔

From Propositions 5 and 4 above, we get that SAT(2)− is L-hard, therefore also
SAT(2) is L-hard. Together with Theorem 3, this proves the main result of this
section:

Theorem 6. SAT(2) is L-complete.

Not-all-equal-satisfiability

We are now going to show the L-completeness of NAE-SAT(2). We first consider
the problem for the special case of monotone formulas, which turns out to be
equivalent to another problem on tagged graphs.

Let an isolated clause be a unit clause such that the variable in this clause
does not occur in any other clause. In this section we assume w.l.o.g. that for-
mulas do not contain isolated clauses. This is possible, since no formula with an
isolated clause is in NAE-SAT, and on the other hand such formulas are easily
recognized.

Let mCNF(2) be the class of monotone formulas in CNF(2), i.e., formu-
las that contain only positive literals, and let mNAE-SAT(2) be the restric-
tion of NAE-SAT(2) to instances in mCNF(2). Whereas satisfiability is trivial,
NAE-SAT is NP-complete even for monotone formulas.

For a formula F ∈ mCNF(2), we define the tagged graph G′(F ) by



– G′(F ) has a vertex vC for every clause C in F .
– If clauses C and D contain the same literal x, then there is an edge ex

between vC and vD.
– If C contains a literal, that does not occur in another clause, then vC is

tagged.

Let E2C (edge-2-colorability) denote the following problem:

E2C: given a tagged graph G = (V, E, T ), can the edges in G be colored
by two colors such that every untagged vertex v ∈ V \ T has incident
edges of both colors.

The following characterization of mNAE-SAT(2) is rather obvious.

Proposition 7. A formula F ∈ mCNF(2) is in NAE-SAT iff G′(F ) is in E2C.

Note that for a formula F with an isolated clause, the graph G′(F ) contains a
tagged isolated vertex. If an isolated clause is added to a formula F ∈ NAE-SAT(2)−,
then the resulting formula F ′ is no longer not-all-equal satisfiable, whereas
G′(F ′) is in E2C. Thus our assumption is needed for the equivalence to hold.

In fact, we can show that the two problems are equivalent.

Proposition 8. mNAE-SAT(2) is equivalent to E2C.

Proof. One direction is Proposition 7. For the other direction, given a tagged
graph G = (V, E, T ), we define a formula F (G) ∈ mCNF(2) as follows: for
every edge e ∈ E, there is a variable xe. For every vertex we form a clause
Cv containing the variables xe for the edges e incident on v. Finally, for every
tagged vertex v ∈ T , we add a variable xv to the clause Cv. It is easily seen that
G′(F (G)) = G, and hence by Proposition 7, the construction reduces E2C to
mNAE-SAT(2). ⊓⊔

Lemma 9. An undirected graph G is in E2C iff the following two conditions

hold:

1. every untagged vertex has degree at least two, and

2. there is no untagged connected component that is a simple odd length cycle.

Proof. Both conditions are obviously necessary. To see that they are sufficient,
we first show the following claim:

Claim. If the conditions above hold, then every untagged component C contains
either an even length cycle, or two edge-disjoint odd cycles.

Start a walk from some vertex on C, that never leaves a vertex on the same edge
it came from, which is possible by condition 1. Since C is finite, we must find a
cycle Z that way. Either Z is of even length, or else by condition 2 there must be
a vertex v on Z of degree at least 3. Start another walk leaving v on an edge not
on Z. Again, this walk must end in a cycle Z ′. Now either Z ′ is of even length,
or otherwise it either is edge-disjoint from Z, or it shares a common part with



Z. But in the latter case, the cycle following Z and Z ′, leaving out the common
part, is of even length.

The task to show that a graph satisfying the two conditions can be edge-
colored, can now be split into three subtasks, to show how to color each type of
connected component.

Claim. Every tagged component can be edge-colored.

This is shown by induction on the number of vertices in the component. The
induction basis is trivial.

For the induction step, let a tagged component C be given, and let v be a
tagged vertex in C. We modify C by deleting v and all incident edges, and by
tagging all neighbors of v. The result C′ is a union of several smaller tagged
components, which can be colored by the induction hypothesis. This coloring
can be extended to a coloring of C: if for a neighbor u of v, all incident edges
in C′ receive the same color, then we give the edge between u and v the other
color. By induction, any tagged component can be colored.

Claim. A component C that contains an even length cycle can be edge-colored.

We color the edges around the cycle by alternating colors. For a vertex on the
cycle, the incident edges other than the two cycle edges can now be colored
arbitrarily. We therefore modify C by deleting the edges in the cycle, and by
tagging the vertices on the cycle. The result is a union of tagged components,
which can be colored by the previous case. Thus we can color all of C.

Claim. A component C that contains two edge-disjoint odd length cycles Z1 and
Z2 can be edge-colored.

Choose vertices v1 on Z1 and v2 on z2 that are connected by a simple path P

(possibly of length 0.) As in the previous claim, it suffices to color the edges on
Z1, Z2 and P . We color the two edges on Z1 incident with v1 by the same color
χ, and the two edges on Z2 incident with v2 by χ′, where χ = χ′ if P is of odd
length, and χ 6= χ′ otherwise.

Z2

P
Z1

χ
′

v2

χ

χ
′

v1

χ

The coloring can now be completed by coloring P and the rest of Z1 and Z2 by
alternating colors. ⊓⊔

From this characterization we see that E2C ∈ L, by the following algorithm:
First check that condition 1 holds, which is easy. Then for every dart d = (v, e) ∈
D(G), start a walk leaving v via e as in the above proof, until either a tagged
vertex or a vertex of degree at least 3 is found, in which case the walk terminates
successfully. If neither happens before the walk returns to v, then v lies on a



simple cycle, thus we count the number of steps in the walk to decide whether
the cycle is of even or odd length, and terminate with success or not accordingly.

By Proposition 8, we obtain the following result:

Proposition 10. mNAE-SAT(2) is in L.

We now show that the general case is in L as well:

Theorem 11. NAE-SAT(2) is in L.

Proof. We reduce NAE-SAT(2) to E2C. The definition of G′(F ) is extended to
non-monotone formulas in CNF(2) by adding the clause:

– if C and D contain complementary literals x and x̄, then we add a new
vertex vx and connect it to vC and vD as shown below.

vC vDvx

The presence of the vertex vx enforces that the two edges get different colors,
therefore F ∈ CNF(2) is in NAE-SAT iff G′(F ) is in E2C. ⊓⊔

Proposition 12. E2C is L-complete.

Proof. We reduce the following problem DCA, which is L-complete by a result
of Cook and McKenzie [9], to E2C: given a permutation π, and two points a and
b, do a and b lie on the same orbit of π?

The reduction produces a graph G(π) as follows: there are two vertices c and
c′ for each point c, plus two extra vertices a′′ and b′′. In the graph G(π), every
c other than a, b is connected to π(c) by a path of length 2 going through c′,
as shown below. Similarly, a is connected to π(a) by a path of length 3 going
through a′ and a′′, as shown below, and analogously for b.

π(c)c

a π(a)

Note that G(π) consists of disjoint cycles corresponding to the orbits of π. Now
if a and b lie on the same orbit, then G(π) has only even length cycles, thus
is in E2C. Otherwise G(π) has two odd cycles, thus is not in E2C. Thus the
construction reduces DCA to E2C, and hence E2C is L-hard. We have shown
E2C ∈ L above, therefore E2C is L-complete. ⊓⊔

From Propositions 12 and 8 above, we get that mNAE-SAT(2) is L-hard,
therefore also NAE-SAT(2) is L-hard. Together with Theorem 11, this proves
the main result of this section:

Theorem 13. NAE-SAT(2) is L-complete.



Acknowledgments I would like to thank Albert Atserias and Jacobo Torán for
helpful conversations about the subject.

References

1. Cook, S.A.: The complexity of theorem proving procedures. In: Proc. 3rd ACM
Symposium on Theory of Computing. (1971) 151–158

2. Plaisted, D.A.: Complete problems in the first-order predicate calculus. Journal of
Computer and System Sciences 29 (1984) 8–35

3. Jones, N.D., Lien, Y.E., Laaser, W.T.: New problems complete for nondeterministic
log space. Mathematical Systems Theory 10 (1976) 1–17

4. Kleine Büning, H., Lettman, T.: Aussagenlogik: Deduktion und Algorithmen. Teub-
ner, Stuttgart (1994)

5. Lewis, H.R., Papadimitriou, C.H.: Symmetric space-bounded computation. Theo-
retical Computer Science 19 (1982) 161–187

6. Porschen, S., Randerath, B., Speckenmeyer, E.: Linear time algorithms for some not-
all-equal satisfiability problems. In: Proc. 6th International Conference on Theory
and Applications of Satisfiability Testing, Springer LNAI (2003)

7. Braverman, M.: Witnessing SAT(2) and NAE-SAT(2) in L. Unpublished notes
(November 2003)

8. Immerman, N.: Descriptive Complexity. Springer (1999)
9. Cook, S.A., McKenzie, P.: Problems complete for deterministic logarithmic space.

Journal of Algorithms 8 (1987) 385–394


