A Model-Theoretic Property of Sharply Bounded Formulae, with some Applications*

Jan Johannsen
IMMD 1, Universität Erlangen-Nürnberg
email: johannsen@informatik.uni-erlangen.de

Abstract

We define a property of substructures of models of arithmetic, that of being length-initial, and show that sharply bounded formulae are absolute between a model and its length-initial submodels. We use this to prove independence results for some weak fragments of bounded arithmetic by constructing appropriate models as length-initial submodels of some given model. Mathematics Subject Classification: 03F30, 03H15

Introduction

First we review the definitions of the theories S_{2}^{i} and T_{2}^{i} of Bounded Arithmetic introduced by S. Buss [2]: The language of these theories is the language of Peano Arithmetic extended by symbols for the functions $\left\lfloor\frac{1}{2} x\right\rfloor$, $|x|:=\left\lceil\log _{2}(x+1)\right\rceil$ and $x \# y:=2^{|x| \cdot|y|}$. A quantifier of the form $\forall x \leq t$, $\exists x \leq t$ with x not occurring in t is called a bounded quantifier. Furthermore, a quantifier of the form $\forall x \leq|t|, \exists x \leq|t|$ is called sharply bounded. A formula is called sharply bounded if all quantifiers in it are sharply bounded.
The class of sharply bounded formulae is denoted Σ_{0}^{b} or Π_{0}^{b}. For $i \in \mathbb{N}$, let $\Sigma_{i+1}^{b}\left(\right.$ resp. $\left.\Pi_{i+1}^{b}\right)$ be the least class containing Π_{i}^{b} (resp. Σ_{i}^{b}) and closed under conjunction, disjunction, sharply bounded quantification and bounded existential (resp. universal) quantification. In the standard model, Σ_{i}^{b}-formulae describe exactly the sets in Σ_{i}^{P}, the $i^{\text {th }}$ level of the Polynomial Time Hierarchy of computational complexity theory, and likewise for Π_{i}^{b}-formulae and

[^0]Π_{i}^{P}, for $i \geq 1$. (All the complexity-theoretic notions mentioned in this paper can be found in [9].)
The theory T_{2}^{i} is defined by a finite set $B A S I C$ of quantifier-free axioms that specify the interpretation of the function symbols in the language, plus the induction scheme for Σ_{i}^{b}-formulae $\left(\Sigma_{i}^{b}-I N D\right) . S_{2}^{i}$ is defined by the BASIC axioms plus the scheme of polynomial induction
$$
\varphi(0) \wedge \forall x\left(\varphi\left(\left\lfloor\frac{1}{2} x\right\rfloor\right) \rightarrow \varphi(x)\right) \rightarrow \forall x \varphi(x)
$$
for every Σ_{i}^{b}-formula $\varphi(x)\left(\Sigma_{i}^{b}-P I N D\right)$. By the main result of [2], a function f with Σ_{i}^{b}-graph is provably total in S_{2}^{i} iff $f \in F \Delta_{i}^{P}=F P^{\Sigma_{i-1}^{P}}$, for $i \geq 1$.
The theories R_{2}^{i} were defined in various disguises by several authors [4, 1, 11]. Their language is the same as that of S_{2}^{i} extended by additional function symbols for subtraction - and $\operatorname{MSP}(x, i):=\left\lfloor\frac{x}{2^{i}}\right\rfloor$. The set $B A S I C$ is extended by additional quantifier-free axioms on the new function symbols; we shall simply call the extended set $B A S I C$ also, as it will always be clear from the context which set is meant. Now R_{2}^{i} is axiomatized by $B A S I C$ plus the scheme of polynomial length induction
$$
\varphi(0) \wedge \forall x\left(\varphi\left(\left\lfloor\frac{1}{2} x\right\rfloor\right) \rightarrow \varphi(x)\right) \rightarrow \forall x \varphi(|x|)
$$
for every Σ_{i}^{b}-formula $\varphi(x)\left(\Sigma_{i}^{b}\right.$-LPIND). R_{2}^{1} is related to the complexity class uniform $N C$, since the Σ_{1}^{b}-definable functions of R_{2}^{1} are exactly those in this class.

Recall the axioms Ω_{2} stating that the function $x \#_{3} y:=2^{|x| \#|y|}$ is total, which is most conveniently expressed as $\forall x \exists y|x| \#|x|=|y|$, and \exp saying that exponentiation is total, which we can express as $\forall x \exists y|y|=x$. We shall construct models as substructures of some model of the theory $S_{2}^{1}+\Omega_{2}+$ $\neg e x p$, whose consistency follows from Parikh's Theorem, see e.g. [5].

The model-theoretic property

A fact well-known and extensively used in the study of models of arithmetic is the absoluteness of bounded formulae between a model and an initial segment of it. In order to obtain an analogon for sharply bounded formulae, we introduce the following notion:

Definition: Let N and M be models of $B A S I C, N$ a substructure of M. Then we say N is length-initial in M, written $N \subseteq_{\ell} M$, if for all $a \in N$ and $b \in M$ with $b<|a|$ already $b \in N$ holds.

As usual, we call an element a of some model M small, if $a \leq|b|$ for some $b \in M$, and large otherwise. Hence $N \subseteq_{\ell} M$ iff the small elements in N form an initial segment of the small elements in M.
In the following, barred letters will always denote tuples of variables or elements whose length is either irrelevant or clear from the context.

Proposition 1 If $N \subseteq_{\ell} M$, then sharply bounded formulae are absolute between N and M, i.e. for every Σ_{0}^{b}-formula $\varphi(\bar{x})$ and $\bar{a} \in N$

$$
N \models \varphi(\bar{a}) \text { iff } M \models \varphi(\bar{a}) .
$$

Proof: This is proved easily by induction on the complexity of the formula $\varphi(\bar{x})$. The crucial case is $\varphi(\bar{x}) \equiv \forall y \leq|t(\bar{x})| \theta(\bar{x}, y)$, where we have

$$
\begin{aligned}
N & =\forall y \leq|t(\bar{a})| \theta(\bar{a}, y) \\
& \leftrightarrow \quad \text { for all } b \in N \text { with } b \leq|t(\bar{a})| M \models \theta(\bar{a}, b) \\
& \leftrightarrow \quad M \models \forall y \leq|t(\bar{a})| \theta(\bar{a}, y) .
\end{aligned}
$$

The first equivalence holds by the induction hypothesis, and the second one by $M \subseteq_{\ell} N$.
Actually, the analogy between Prop. 1 and the absoluteness of bounded formulae w.r.t. initial segments is more than a mere analogy, as the following considerations show.

A model M of some (sufficiently strong) theory of Bounded Arithmetic can be viewed as a second-order model $\mathfrak{M}=(\log M, M)$, where $\log M$ denotes the set of small elements in M and for $i \in \log M$ and $m \in M$ we say that $i \in m$ if the i th bit in m is 1 . There is also a syntactical translation mapping a formula φ in the language of Bounded Arithmetic to a secondorder formula φ^{\sharp} such that $M \models \varphi$ iff $\mathfrak{M} \vDash \varphi^{\sharp}$. This correspondence between first- and second-order models together with the translation \sharp is known as the $R S U V$-isomorphism [11].

Now $N \subseteq_{\ell} M$ holds iff $\mathfrak{N}=(\log N, N)$ is an initial segment of \mathfrak{M}, and sharply bounded formulae are mapped by \sharp to first-order bounded formulae. Therefore the assertion of Prop. 1 and the absoluteness of bounded formulae are the same modulo the $R S U V$-isomorphism.

Our main applications of Prop. 1 will be of the following type: If a theory T has a $\forall \Sigma_{0}^{b}$-axiomatization, and we have a model $M \models T$ and a length initial submodel $N \subseteq_{\ell} M$, we can conclude $N \neq T$.

Sharply bounded length induction

Let L_{2}^{i} denote the theory in the language of S_{2}^{i} given by the $B A S I C$ axioms and the scheme of length induction

$$
\varphi(0) \wedge \forall x(\varphi(x) \rightarrow \varphi(S x)) \rightarrow \forall x \varphi(|x|)
$$

for each Σ_{i}^{b}-formula $\varphi(x)\left(\Sigma_{i}^{b}\right.$-LIND). For $i \geq 1$, we have $L_{2}^{i}=S_{2}^{i}$ (see [3] for a proof).
The proof of the inclusion $L_{2}^{i} \subseteq S_{2}^{i}$ is fairly easy and also works for $i=0$: to prove $L I N D$ for a formula $\varphi(x)$, apply PIND to $\varphi(|x|)$. The proof of the opposite inclusion rests mainly on the definability of the functions - and $M S P$ in L_{2}^{1} and thus can only be applied to the case $i=0$ in the extended language of R_{2}^{i}.
Therefore, in case $i=0$, have $L_{2}^{0} \subseteq T_{2}^{0}$, which is trivial, and $L_{2}^{0} \subseteq S_{2}^{0}$. Furthermore the first inclusion is proper since Takeuti [10] showed that the following theorem of T_{2}^{0}

$$
\forall x(x=0 \vee \exists y x=S y)
$$

is unprovable in S_{2}^{0} and hence in L_{2}^{0}. This shows that the predecessor and hence the modified subtraction function - cannot be provably total in either of these theories.

Note that $L_{2}^{0}=S_{2}^{0}$ would imply that S_{2}^{0} is (properly) contained in T_{2}^{0}, but it is not ruled out yet that these latter two theories are incomparable w.r.t. inclusion.
As one application of the model-theoretic property above, we shall show below that $L_{2}^{0} \varsubsetneqq S_{2}^{0}$. We also show that S_{2}^{0} is not $\forall \Sigma_{0}^{b}$-axiomatizable.
To make this possible, we need the following fact, which is easily proved: over the $B A S I C$ axioms, $\Sigma_{0}^{b}-L I N D$ is equivalent to the scheme

$$
\forall a[\varphi(0) \wedge \forall x<|a|(\varphi(x) \rightarrow \varphi(S x)) \rightarrow \varphi(|a|)]
$$

for every sharply bounded formula $\varphi(x)$. Therefore L_{2}^{0} is $\forall \Sigma_{0}^{b}$-axiomatizable, and hence from Prop. 1 we get

Corollary 2 If $M \models L_{2}^{0}$ and $N \subseteq_{\ell} M$, then $N \models L_{2}^{0}$.

A model of L_{2}^{0} with a partial predecessor function

We already know from Takeuti's result for S_{2}^{0} mentioned above and the inclusion $L_{2}^{0} \subseteq S_{2}^{0}$, that the existence of predecessors is independent from L_{2}^{0}. As an illustration of the method, we shall now construct a model witnessing this independence. Let $M \models S_{2}^{1}+\Omega_{2}+\neg \exp$, and define

$$
M_{0}:=\{a \in M ; a \text { is small }\} \cup\{1 \# a ; a \in M\}
$$

Hence M_{0} contains all small elements of M, plus a prototypical large element of each length. Let \hat{M} be the closure of M_{0} under addition and multiplication. We imagine \hat{M} being built in stages: for $i \in \mathbb{N}$ we define

$$
M_{i+1}:=\left\{a+b ; a, b \in M_{i}\right\} \cup\left\{a \cdot b ; a, b \in M_{i}\right\}
$$

and $\hat{M}:=\bigcup_{i \in \mathbb{N}} M_{i}$.

Proposition $3 \hat{M}$ is closed under $||,.\left\lfloor\frac{1}{2}\right\rfloor$ and \#.

Proof: Closure under |.| is clear since all small elements of M are in M_{0} and hence in \hat{M}. Closure under \# is also easy since for every $a, b \in M$, $a \# b=1 \#\left\lfloor\frac{1}{2} a \# b\right\rfloor$, and hence $a \# b \in M_{0}$.
Now for closure under $\left\lfloor\frac{1}{2}\right\rfloor$: We first show that M_{0} is closed under $\left\lfloor\frac{1}{2}\right\rfloor$. This follows from the fact that $\left\lfloor\frac{1}{2} a\right\rfloor$ is small iff a is small, and $\left\lfloor\frac{1}{2}(1 \# a)\right\rfloor=$ $1 \#\left\lfloor\frac{1}{2} a\right\rfloor$.
Now suppose that for every $a \in M_{i}\left\lfloor\frac{1}{2} a\right\rfloor \in \hat{M}$, and let $b \in M_{i+1}$. Then there are $b_{1}, b_{2} \in M_{i}$ such that $b=b_{1}+b_{2}$ or $b=b_{1} \cdot b_{2}$. Now we can calculate

$$
\begin{aligned}
\left\lfloor\frac{1}{2}\left(b_{1}+b_{2}\right)\right\rfloor & = \begin{cases}\left\lfloor\frac{1}{2} b_{1}\right\rfloor+\left\lfloor\frac{1}{2} b_{2}\right\rfloor & \text { if } b_{1} \cdot b_{2} \text { is even } \\
\left\lfloor\frac{1}{2} b_{1}\right\rfloor+\left\lfloor\frac{1}{2} b_{2}\right\rfloor+1 & \text { else }\end{cases} \\
\left\lfloor\frac{1}{2}\left(b_{1} \cdot b_{2}\right)\right\rfloor & = \begin{cases}\left\lfloor\frac{1}{2} b_{1}\right\rfloor \cdot b_{2} & \text { if } b_{1} \text { is even } \\
\left\lfloor\frac{1}{2} b_{1}\right\rfloor \cdot b_{2}+\left\lfloor\frac{1}{2} b_{2}\right\rfloor & \text { else }\end{cases}
\end{aligned}
$$

and see that in either case $\left\lfloor\frac{1}{2} b\right\rfloor \in \hat{M}$.
In particular, \hat{M} is a substructure of M, and from the definition we see that $\hat{M} \subseteq_{\ell} M$, since \hat{M} contains all small elements of M. Therefore $\hat{M} \models L_{2}^{0}$.

Lemma 4 If for $a \in M$ there is $b \in \hat{M}$ with $S b=1 \# a$, then a is small.

Proof: Recall from [2] that in S_{2}^{1} the function $\operatorname{Bit}(x, i)$ giving the value of the $i^{\text {th }}$ bit in the binary expansion of x and the operation of length bounded counting can be defined. Hence we can define the function $\operatorname{Count}(x):=$ $\sharp i<|x|(\operatorname{Bit}(x, i)=1)$ for $x \in M$, and show in S_{2}^{1} that $\operatorname{Count}(a \circ b) \leq$ $\operatorname{Count}(a) \circ \operatorname{Count}(b)$ for $\circ \in\{+, \cdot\}$.
We shall show below that for every $b \in \hat{M}$, the number of bits set is very small, i.e. Count $(b) \leq\|c\|$ for some $c \in M$. On the other hand, if $S b=1 \# a$, then $\operatorname{Count}(b)=|a|$, so we get $|a| \leq\|c\|$, and thus $a \leq 2|c|$, so a is small.
We prove the above claim by induction, using the above defined M_{i}. If $b \in M_{0}$, then either b is small, or $b=1 \# d$ for some $d \in M$. In the first case, $|b| \leq\|c\|$, and therefore $\operatorname{Count}(b) \leq|b| \leq\|c\|$ for some $c \in M$. In the second case, Count $(b)=1$.
Now let $b \in M_{i+1}$, and suppose the claim holds for all elements in M_{i}. Then there are $b_{1}, b_{2} \in M_{i}$ such that $b=b_{1}+b_{2}$ or $b=b_{1} \cdot b_{2}$. Let $\operatorname{Count}\left(b_{j}\right) \leq\left\|c_{j}\right\|$ for $j=1,2$. Now if $b=b_{1}+b_{2}$, then by the above

$$
\operatorname{Count}(b) \leq\left\|c_{1}\right\|+\left\|c_{2}\right\| \leq\left|\left|c_{1}\right| \cdot\right| c_{2}|+1| \leq\left\|2\left(c_{1} \# c_{2}\right)\right\|
$$

If on the other hand $b=b_{1} \cdot b_{2}$, then we have

$$
\operatorname{Count}(b) \leq\left\|c_{1}\right\| \cdot\left\|c_{2}\right\| \leq\left|\left|c_{1}\right| \#\right| c_{2} \mid \|
$$

and by Ω_{2} there is $c \in M$ with $\left|c_{1}\right| \#\left|c_{2}\right| \leq|c|$, and thus $\operatorname{Count}(b) \leq \| c| |$ for this c.

From Lemma 4 we immediately get
Theorem $5 \hat{M} \models L_{2}^{0}+\exists x(x \neq 0 \wedge \forall y S y \neq x)$.
Proof: If there is $b \in \hat{M}$ with $S b=1 \# a$, then Lemma 4 shows that a is small. But since $M \mid=\neg \exp$, there are large elements in M, and for large a the element $1 \# a \in \hat{M}$ has no predecessor in \hat{M}.

The independence of $\Sigma_{0}^{b}-P I N D$

Let again $M \models S_{2}^{1}+\Omega_{2}+\neg \exp$. From this model M, we construct a model $\tilde{M}=L_{2}^{0}$ that does not satisfy S_{2}^{0}.
For $x \in M$ and $n \in \mathbb{N}$ we define $x^{\# n}$ inductively by $x^{\# 0}:=1, x^{\# 1}:=x$ and $x^{\#(n+1)}:=x^{\# n} \# x$ for $n \geq 1$. Choose a large $a \in M$. Then we define

$$
\tilde{M}:=\left\{b \in M ; b^{\# n}<a \text { for all } n \in \mathbb{N}\right\} \cup\{b \in M ; b>n \cdot a \text { for all } n \in \mathbb{N}\}
$$

We call the first set in the union the lower part of \tilde{M} and the second set in the union the upper part. Note that the upper part is nonempty since $a^{2}>n \cdot a$ for every $n \in \mathbb{N}$.

Proposition $6 \tilde{M}$ is closed under $||,.\left\lfloor\frac{1}{2}\right\rfloor,+$, and \#.

Proof: Since $M \models \Omega_{2}$, all small elements of M are in the lower part, since otherwise a would be small. Hence \tilde{M} is closed under |.|.
If b is in the lower part, then of course $\left\lfloor\frac{1}{2} b\right\rfloor$ is in the lower part. On the other hand, the upper part is closed under $\left\lfloor\frac{1}{2}\right\rfloor$ since if $\left\lfloor\frac{1}{2} b\right\rfloor \leq n \cdot a$, then $b \leq(3 n) \cdot a$.
If at least one of b, c is in the upper part, then $b \circ c$ is in the upper part, for $\circ \in\{+, \cdot, \#\}$.
Finally, the lower part is closed under \#, and thus under + and \cdot. To see this, let b and c be in the lower part. Then for every $n \in \mathbb{N},(b \# c)^{\# n} \leq$ $\max (b, c)^{\# 2 n}<a$, hence $b \# c$ is in the lower part.
So \tilde{M} is a substructure of M, and moreover $\tilde{M} \subseteq_{\ell} M$ since all small elements of M are in \tilde{M}, and thus $\tilde{M}=L_{2}^{0}$. We show that there is a small element in \tilde{M} that is not the length of any other element of \tilde{M}.

Proposition $7 \tilde{M}=L_{2}^{0}+\exists x, y(x<|y| \wedge \forall z \leq y|z| \neq x)$.

Proof: We shall show the following: If b is in the lower part of \tilde{M}, then $|b|<|a|$, and if b is in the upper part of \tilde{M}, then $|b|>|a|$. Hence the element $|a| \in \tilde{M}$ is small, but there is no $b \in \tilde{M}$ with $|b|=|a|$.

So suppose $|b| \geq|a|$ for some b in the lower part. Then in particular $b \# b<a$, hence $|b \# b| \leq|a|$. But $|b \# b|=|b|^{2}+1 \leq|a| \leq|b|$ leads to a contradiction.
Dually, suppose $|b| \leq|a|$ for some b in the upper part. Then $2 a<b$, hence $|a|+1=|2 a| \leq|b| \leq|a|$, which is likewise impossible.
On the other hand, S_{2}^{0} proves that every small element is the length of some other element.

Proposition $8 S_{2}^{0} \vdash \forall x, y(x \leq|y| \rightarrow \exists z \leq y|z|=x)$.
Proof: Consider the following case of $\Sigma_{0}^{b}-P I N D$:

$$
|0|<S a \wedge \forall x\left(\left|\left\lfloor\frac{1}{2} x\right\rfloor\right|<S a \rightarrow|x|<S a\right) \rightarrow|b|<S a
$$

By taking the contrapositive of it and using the fact that $S a \leq 0$ is refutable, we obtain

$$
a<|b| \rightarrow \exists x\left(\left.\left\lfloor\frac{1}{2} x\right\rfloor|\leq a \wedge S|\left\lfloor\frac{1}{2} x\right\rfloor \right\rvert\,>a\right)
$$

and hence $a<|b| \rightarrow \exists x\left(\left|\left\lfloor\frac{1}{2} x\right\rfloor\right|=a\right)$, which implies $a<|b| \rightarrow \exists z|z|=a$. But if $|z|=a<|b|$, then $z<b$, so the existential quantifier can be bounded by b.
On the other hand, $a=|b| \rightarrow \exists z \leq b|z|=a$ is trivial, and combining these, we get

$$
a \leq|b| \rightarrow \exists z \leq b|z|=a
$$

as required.
From Theorem 7 and Prop. 8 we immediately have the following
Theorem $9 L_{2}^{0} \nvdash \Sigma_{0}^{b}-P I N D$, hence $L_{2}^{0} \varsubsetneqq S_{2}^{0}$.
This is the first example of a situation where the schemes of polynomial induction and length induction are not equivalent. Furthermore we obtain

Corollary $10 S_{2}^{0}$ is not axiomatizable by a set of $\forall \Sigma_{0}^{b}$-sentences.
Proof: By the above results $\underset{\sim}{\tilde{M}}$ cannot be a model of S_{2}^{0}. If S_{2}^{0} were $\forall \Sigma_{0}^{b}-$ axiomatizable, $M=S_{2}^{0}$ and $\tilde{M} \subseteq_{\ell} M$ would imply $\tilde{M} \models S_{2}^{0}$.
A further conclusion we can draw from this construction is the following:
Corollary 11 The function $M S P$ is not definable in L_{2}^{0}.
Proof: The model $\tilde{M} \models L_{2}^{0}$ is not closed under $M S P$: since $a^{2} \in \tilde{M}$, there is a $b \in \tilde{M}$ with $|b|=2|a|$. For this b we have then $|M S P(b,|a|)|=|a|$, hence $\operatorname{MSP}(b,|a|) \notin \tilde{M}$.

Towards a model-theoretic proof of Takeuti's result

It would be nice if the method of length-initial submodels could be extended to yield a model-theoretic proof of Takeuti's independence result, the unprovability of the existence of predecessors in S_{2}^{0}. By Corollary 10 the method we have used above is not applicable.
Nevertheless, the possibility remains that the model $\hat{M} \models L_{2}^{0}$ defined above satisfies S_{2}^{0}, which would give the desired model-theoretic proof. A starting point could be the following property of \hat{M}.

Definition: Let $N \subseteq_{\ell} M$, then N is called dense in M if for each $a \in M$ such that $|a|$ is small in N there is $b \in N$ with $|b|=|a|$.
The property that the model \tilde{M} is not dense in M was used above to show that $\tilde{M} \not \vDash S_{2}^{0}$. Hence the density of a model N in $M \models S_{2}^{0}$ might suffice for \hat{M} to satisfy S_{2}^{0}, which would give the desired proof since \hat{M} is dense in M. This question remains open, but it is at least possible to prove that \hat{M} satisfies some fraction of S_{2}^{0} stronger than L_{2}^{0}. To state this, we need the following notion:
Definition: Let $M \models B A S I C$, then a formula $\varphi(x)$ is called stable in M if for all $a, b \in M$ with $|a|=|b|$ it holds that $M=\varphi(a)$ iff $M \models \varphi(b)$.
Hence stable properties only depend on the length of an element, in particular, a formula of the form $\varphi(|x|)$ is stable in every model. Now we can prove that \hat{M} satisfies polynomial induction for stable Σ_{0}^{b}-formulae.

Proposition 12 If $N \subseteq_{\ell} M \models S_{2}^{0}$ and N is dense in M, then N satisfies PIND for stable Σ_{0}^{b}-formulae.

Proof: Let $\varphi(x) \in \Sigma_{0}^{b}$ be stable in M, and let $N=\varphi(0)$ and $N \models$ $\varphi\left(\left\lfloor\frac{1}{2} b\right\rfloor\right) \rightarrow \varphi(b)$ for all $b \in N$. Now suppose there is an $a \in N$ such that $N \models \neg \varphi(a)$.
By absoluteness we have $M \models \varphi(0)$ and $M \models \neg \varphi(a)$, hence there is $b \in M$ with $M=\varphi\left(\left\lfloor\frac{1}{2} b\right\rfloor\right) \wedge \neg \varphi(b)$. Since N is dense in M there is $b^{\prime} \in N$ with $\left|b^{\prime}\right|=|b|$, and thus $\left|\left\lfloor\frac{1}{2} b^{\prime}\right\rfloor\right|=\left|\left\lfloor\frac{1}{2} b\right\rfloor\right|$.
Now the stability of $\varphi(x)$ yields $M \models \varphi\left(\left\lfloor\frac{1}{2} b^{\prime}\right\rfloor\right) \wedge \neg \varphi\left(b^{\prime}\right)$, and by absoluteness this also holds in N, in contradiction to the above.
Now for the desired model-theoretic proof, it would suffice to show that S_{2}^{0} is implied by PIND for stable Σ_{0}^{b}-formulae. Note that the PIND for stable Σ_{0}^{b}-formulae is strictly stronger than $\Sigma_{0}^{b}-L I N D$: To prove LIND for a formula $\psi(x), P I N D$ for the stable formula $\psi(|x|)$ is used. On the other hand, the model $\tilde{M} \models L_{2}^{0}$ does not satisfy PIND for stable Σ_{0}^{b}-formulae, since the formula $|x|<S a$ used in the instance of PIND in the proof of Prop. 8 is stable in every model.

An independence result for R_{2}^{0}

In [11] it was shown that R_{2}^{0} is equivalent to the theory given by the $B A S I C$ axioms and $\Sigma_{0}^{b}-P I N D$ in the language of R_{2}^{0}.

In [6] an independence result for (an extension of) R_{2}^{0} was proved by prooftheoretic means similar to the method of [10]: Let $y=\left\lfloor\frac{1}{3} x\right\rfloor$ stand short for the formula $x=3 y \vee x=3 y+1 \vee x=3 y+2$.

Theorem $13 \forall x \exists y y=\left\lfloor\frac{1}{3} x\right\rfloor$ is not provable in R_{2}^{0}.
As a corollary to the proof of this theorem given in [6], it follows that R_{2}^{0} cannot Σ_{1}^{b}-define every function in the very small complexity class uniform $N C^{0}$. We now give a new proof of Theorem 13 using our model-theoretic technique. This proof yields the same corollary as the syntactic proof.
First, we need the fact that R_{2}^{0} is $\forall \Sigma_{0}^{b}$-axiomatizable, namely by the $B A S I C$ axioms and the scheme

$$
\forall a\left[A(0) \wedge \forall x \leq|a|\left(A\left(\left\lfloor\frac{1}{2} x\right\rfloor\right) \rightarrow A(x)\right) \rightarrow \forall x \leq|a| A(x)\right]
$$

for every Σ_{0}^{b}-formula $A(x)$. This scheme obviously implies $\Sigma_{0}^{b}-L P I N D$, and it can be proved by PIND on the variable a in the Σ_{0}^{b}-formula [...].
Let $M \models S_{2}^{1}+\Omega_{2}+\neg \exp$, regarded as a structure for the language of R_{2}^{0}. For $a \in M$, let $\operatorname{blk}(a)$ denote the number of blocks of zeros and ones in a, i.e.

$$
\operatorname{blk}(a):=\sharp i<|a| \operatorname{Bit}(a, i) \neq \operatorname{Bit}(a, i+1)
$$

which is well-defined since this function is Σ_{1}^{b}-definable in S_{2}^{1}. We consider the set of those elements in M with a very small number of blocks

$$
\breve{M}:=\{a \in M ; \operatorname{blk}(a) \leq\|b\| \text { for some } b \in M\} .
$$

Proposition $14 \breve{M}$ is a substructure of M.
Proof: The inequalities $\operatorname{blk}(|a|) \leq\|a\|, \operatorname{blk}(a \# b) \leq 2, \operatorname{blk}\left(\left\lfloor\frac{1}{2} a\right\rfloor\right) \leq \operatorname{blk}(a)$ and $\operatorname{blk}(M S P(a, i)) \leq \operatorname{blk}(a)$ are trivial, hence M is closed under these operations. We shall now show that for $\circ \in\{+, \dot{-} \cdot\}, \mathrm{blk}(a \circ b)$ is bounded by a polynomial in $\operatorname{blk}(a)$ and $\operatorname{blk}(b)$. The proofs can be formalized in S_{2}^{1}, and since $M=\Omega_{2}$, this shows that M is closed under these operations.
$\operatorname{Lemma} 15 \operatorname{blk}(a+1) \leq \operatorname{blk}(a)+1$.
Proof: If a is even, then the last bit in a is changed to one, whereby at most one new block is introduced. If a is odd, then the last block of ones is changed to zero, and the rightmost zero is changed to one; this also introduces at most one new block.

Lemma 16 If $a \geq b$, then $\operatorname{blk}(a+b) \leq \operatorname{blk}(a)+2 \operatorname{blk}(b)+1$.

Proof: We first prove that $\operatorname{blk}(a+b) \leq \operatorname{blk}(a)+2 \mathrm{blk}(b)$ in case that b is even, by induction on $\operatorname{blk}(b)$. The base case, $\operatorname{blk}(b)=0$, is trivial. For the inductive step, let $L S P(a, i)$ denote $a \bmod 2^{i}$, the number consisting of the last i bits of a, and define

$$
\begin{gathered}
i_{b}:=\mu i<|b| \operatorname{Bit}(b, i)=1 \\
j_{b}:=\mu j<|b| j>i_{b} \wedge \operatorname{Bit}(b, j)=0 \\
a^{\prime}:=\operatorname{MSP}\left(a, j_{b}\right) \quad b^{\prime}:=\operatorname{MSP}\left(b, j_{b}\right) \\
a_{0}:=L S P\left(a, i_{b}\right) \quad a_{1}:=\operatorname{MSP}\left(\operatorname{LSP}\left(a, j_{b}\right), i_{b}\right)
\end{gathered}
$$

where we treat a_{0} and a_{1} as bit-strings, possibly with leading zeroes. Obviously, we have $\operatorname{blk}\left(a^{\prime}\right)+\operatorname{blk}\left(a_{1}\right)+\operatorname{blk}\left(a_{0}\right) \leq \operatorname{blk}(a)+2$, and $\operatorname{blk}(b)=$ $\operatorname{blk}\left(b^{\prime}\right)+2$. Furthermore, since b^{\prime} is even, the inductive hypothesis assures that $\operatorname{blk}\left(a^{\prime}+b^{\prime}\right) \leq \operatorname{blk}\left(a^{\prime}\right)+2 \operatorname{blk}\left(b^{\prime}\right)$.

Now if a_{1} consists entirely of zeroes, then $a+b$ is given by $a^{\prime}+b^{\prime}$ concatenated with a string of ones of length $\left|a_{1}\right|$ followed by a_{0}. This gives us

$$
\begin{aligned}
\operatorname{blk}(a+b) & \leq \operatorname{blk}\left(a^{\prime}+b^{\prime}\right)+\operatorname{blk}\left(a_{0}\right)+1 \\
& \leq \operatorname{blk}\left(a^{\prime}\right)+2 \operatorname{blk}\left(b^{\prime}\right)+\operatorname{blk}\left(a_{0}\right)+1 \\
& \leq \operatorname{blk}(a)+2 \operatorname{blk}\left(b^{\prime}\right)+3 \\
& \leq \operatorname{blk}(a)+2 \operatorname{blk}(b)
\end{aligned}
$$

Otherwise, let \tilde{a}_{1} result from a_{1} by replacing the rightmost block of zeroes by ones, the rightmost one by a zero and leaving the rest unchanged. Then $a+b$ is given by $a^{\prime}+b^{\prime}+1$ concatenated with \tilde{a}_{1} followed by a_{0}. Since $\operatorname{blk}\left(\tilde{a}_{1}\right) \leq \operatorname{blk}\left(a_{1}\right)+1$, we can calculate

$$
\begin{aligned}
\operatorname{blk}(a+b) & \leq \operatorname{blk}\left(a^{\prime}+b^{\prime}+1\right)+\operatorname{blk}\left(\tilde{a}_{1}\right)+\operatorname{blk}\left(a_{0}\right) \\
& \leq \operatorname{blk}\left(a^{\prime}+b^{\prime}\right)+\operatorname{blk}\left(a_{1}\right)+\operatorname{blk}\left(a_{0}\right)+2 \\
& \leq \operatorname{blk}\left(a^{\prime}\right)+2 \operatorname{blk}\left(b^{\prime}\right)+\operatorname{blk}\left(a_{1}\right)+\operatorname{blk}\left(a_{0}\right)+2 \\
& \leq \operatorname{blk}(a)+2 \operatorname{blk}\left(b^{\prime}\right)+4 \\
& \leq \operatorname{blk}(a)+2 \operatorname{blk}(b) .
\end{aligned}
$$

Now if b is odd, let

$$
\begin{gathered}
i_{b}:=\mu i<|b| \operatorname{Bit}(b, i)=0 \\
a^{\prime}:=\operatorname{MSP}\left(a, i_{b}\right) \quad b^{\prime}:=\operatorname{MSP}\left(b, i_{b}\right) \\
a_{1}:=\operatorname{LSP}\left(a, i_{b}\right)
\end{gathered}
$$

where again we treat a_{1} as a bit-string with possibly some leading zeroes. Then we have $\operatorname{blk}\left(a^{\prime}\right)+\operatorname{blk}\left(a_{1}\right) \leq \operatorname{blk}(a)+1$ and $\operatorname{blk}(b)=\operatorname{blk}\left(b^{\prime}\right)+1$, and since b^{\prime} is even, we get $\operatorname{blk}\left(a^{\prime}+b^{\prime}\right) \leq \operatorname{blk}\left(a^{\prime}\right)+2 \operatorname{blk}\left(b^{\prime}\right)$ from the above.
Now if a_{1} consists entirely of zeroes, $a+b$ is given by $a^{\prime}+b^{\prime}$ concatenated with a string of ones of length $\left|a_{1}\right|$, hence

$$
\begin{aligned}
\operatorname{blk}(a+b) & \leq \operatorname{blk}\left(a^{\prime}+b^{\prime}\right)+1 \\
& \leq \operatorname{blk}\left(a^{\prime}\right)+2 \operatorname{blk}\left(b^{\prime}\right)+1 \\
& \leq \operatorname{blk}(a)+2 \operatorname{blk}(b)+1 .
\end{aligned}
$$

Otherwise, let \tilde{a}_{1} be defined as above, then $a+b$ is given by $a^{\prime}+b^{\prime}+1$ concatenated with \tilde{a}_{1}, and we can calculate

$$
\begin{aligned}
\operatorname{blk}(a+b) & \leq \operatorname{blk}\left(a^{\prime}+b^{\prime}+1\right)+\operatorname{blk}\left(\tilde{a}_{1}\right) \\
& \leq \operatorname{blk}\left(a^{\prime}+b^{\prime}\right)+\operatorname{blk}\left(a_{1}\right)+2 \\
& \leq \operatorname{blk}\left(a^{\prime}\right)+2 \operatorname{blk}\left(b^{\prime}\right)+\operatorname{blk}\left(a_{1}\right)+2 \\
& \leq \operatorname{blk}(a)+2 \operatorname{blk}\left(b^{\prime}\right)+3 \\
& \leq \operatorname{blk}(a)+2 \operatorname{blk}(b)+1 .
\end{aligned}
$$

This completes the proof of the lemma.
This upper bound is indeed optimal, as the following example shows: Let $b:=\sum_{i=0}^{n} 7 \cdot 2^{6 i}$ and $a:=2 b$. Then in binary we calculate

$$
\begin{array}{rlrl}
a & = & 1110(001110)^{n} \\
b & =111(000111)^{n} \\
a+b & = & 10101(010101)^{n}
\end{array}
$$

so we have $\operatorname{blk}(b)=2 n+1, \operatorname{blk}(a)=2 n+2$ and $\operatorname{blk}(a+b)=6 n+5=$ $\operatorname{blk}(a)+2 \operatorname{blk}(b)+1$.

Lemma $17 \operatorname{blk}(a \dot{-}) \leq \operatorname{blk}(a)+2 \operatorname{blk}(b)+1$.
Proof: If $a<b$, then $a \dot{-} b=0$, hence the claim is trivially true. So let $a \geq b$, let $c:=2^{|a|+1}-1$ and calculate $a \dot{-} b=c-((c-a)+b$. Then $\operatorname{blk}(c-a)=\operatorname{blk}(a)+1$, and since $|c-a|=|c|$ we have $\operatorname{blk}(c-((c-a)+b))=$
$\operatorname{blk}((c-a)+b)-1$, hence we can estimate

$$
\begin{aligned}
\operatorname{blk}(a \dot{-}) & =\operatorname{blk}(c-((c-a)+b)) \\
& \leq \operatorname{blk}((c-a)+b)-1 \\
& \leq \operatorname{blk}(c-a)+2 \operatorname{blk}(b) \\
& =\operatorname{blk}(a)+2 \operatorname{blk}(b)+1
\end{aligned}
$$

Lemma $18 \operatorname{blk}(a b) \leq 3 \operatorname{blk}(a) \operatorname{blk}(b)+6 \operatorname{blk}(a)+4 \operatorname{blk}(b)+6$.
Proof: We calculate $a \cdot b$ using the elementary school algorithm as

$$
a \cdot b=\sum_{i=0}^{|b|} a \cdot \operatorname{Bit}(b, i) \cdot 2^{i} .
$$

Now let $A:=\left\lceil\frac{\mathrm{blk}(b)}{2}\right\rceil$, and define inductively for $k \leq A$

$$
\begin{aligned}
b_{0} & :=b \\
i_{k} & :=\mu i<\left|b_{k}\right| \operatorname{Bit}\left(b_{k}, i\right)=1 \\
j_{k} & :=\mu j<\left|b_{k}\right| \operatorname{Bit}\left(b_{k}, i_{k}+j\right)=0 \\
b_{k+1} & :=\operatorname{MSP}\left(b_{k}, i_{k}+j_{k}\right)
\end{aligned}
$$

and $s_{k}:=i_{k}+\sum_{m=0}^{k-1} i_{m}+j_{m}$. Then the above sum can be rewritten as

$$
\begin{aligned}
a \cdot b & =\sum_{k=0}^{A} \sum_{m=0}^{j_{k}} a \cdot 2^{s_{k}+m} \\
& =\sum_{k=0}^{A}\left(2^{j_{k}+1}-1\right) \cdot a \cdot 2^{s_{k}}=: \sum_{k=0}^{A} c_{k} .
\end{aligned}
$$

Now for each of the terms c_{k} we obtain

$$
\begin{aligned}
\operatorname{blk}\left(c_{k}\right) & =\operatorname{blk}\left(\left(a \cdot 2^{j_{k}+1}-a\right) \cdot 2^{s_{k}}\right) \\
& \leq \operatorname{blk}\left(a \cdot 2^{j_{k}+1}-a\right)+1 \\
& \leq \operatorname{blk}\left(a \cdot 2^{j_{k}+1}\right)+2 \operatorname{blk}(a)+2 \\
& \leq 3 \operatorname{blk}(a)+3
\end{aligned}
$$

hence we can calculate

$$
\begin{aligned}
\operatorname{blk}(a \cdot b) & =\operatorname{blk}\left(\sum_{i=0}^{A} c_{k}\right) \\
& \leq(1+2 A) \operatorname{blk}\left(c_{k}\right)+A \\
& \leq(1+2 A)(3 \operatorname{blk}(a)+3)+A \\
& =(6 A+3) \operatorname{blk}(a)+7 A+3,
\end{aligned}
$$

and using the definition of A we obtain

$$
\operatorname{blk}(a \cdot b) \leq(3 \operatorname{blk}(b)+6) \operatorname{blk}(a)+4 \operatorname{blk}(b)+6,
$$

which completes the proof of the lemma and Prop. 14.
Hence \breve{M} is a substructure of M, and since all small elements of M are in \breve{M}, we have $\breve{M} \subseteq_{\ell} M$, and thus $\breve{M} \models R_{2}^{0}$. Therefore the following proposition establishes Theorem 13.

Proposition $19 \breve{M} \models \neg \forall x \exists y y=\left\lfloor\frac{1}{3} x\right\rfloor$.
Proof: Consider $b:=2^{|a|}-1$ for some $a \in M$, then in b every bit is 1 , and thus $\operatorname{blk}(b)=1$ and so $b \in \breve{M}$. Let $c:=\left\lfloor\frac{1}{3} b\right\rfloor \in M$, then c is the number with $|c|=|b|-1$ with every other bit 1 , as is easily seen by calculating $3 c=2 c+c$. Hence $\operatorname{blk}(c)=|c|$, and so $c \in \breve{M}$ only if c and thus b is small. But $M \models \neg \exp$, and thus for a large b as above $c=\left\lfloor\frac{1}{3} b\right\rfloor \notin \breve{M}$.
From this proof of Theorem 13, as well as from the syntactic proof given in [6], we can furthermore conclude

Theorem 20 There is a function in uniform $N C^{0}$ which is not Σ_{1}^{b}-definable in R_{2}^{0}.

Proof: Consider the function g defined by $g(x):=\left\lfloor\frac{1}{3}\left(2^{|x|}-1\right)\right\rfloor$. The value $g(x)$ is the number y with $|y|=|x|-1$ in which every other bit is 1 . This function is easily seen to be in uniform $N C^{0}$.
For the numbers b with $\operatorname{blk}(b)=1$ used in the above proof $b=2^{|b|}-1$ holds, hence for these numbers $g(b)=\left\lfloor\frac{1}{3} b\right\rfloor$. Hence the proof also shows that the function g is not provably total in R_{2}^{0}.
The Σ_{0}^{b}-comprehension scheme is the scheme of axioms

$$
\exists y<2^{|a|} \forall i<|a|(\operatorname{Bit}(y, i)=1 \leftrightarrow A(i))
$$

for every Σ_{0}^{b}-formula $A(i)$.

Corollary 21 The Σ_{0}^{b}-comprehension scheme is not provable in R_{2}^{0}.

To see this, just observe that the function g above can be easily defined using the comprehension axiom for the formula $A(i): \equiv i \bmod 2=|a| \bmod 2$. This shows that R_{2}^{0} cannot even prove the comprehension scheme for equations, since $x \bmod 2$ can be expressed as a term in the language of R_{2}^{0}.

Acknowledgements: I would like to thank Stephen Bloch, Peter Clote and Wilfried Sieg for some questions and remarks that led to improvements of the paper.

References

[1] B. Allen. Arithmetizing uniform NC. Annals of Pure and Applied Logic, 53:1-50, 1991.
[2] S. R. Buss. Bounded Arithmetic. Bibliopolis, Napoli, 1986.
[3] S. R. Buss and A. Ignjatović. Unprovability of consistency statements in fragments of bounded arithmetic. Annals of Pure and Applied Logic, 74:221-244, 1995.
[4] P. Clote. A first order theory for the parallel complexity class NC. Technical Report BCCS-89-01, Boston College, January 1989.
[5] P. Hájek and P. Pudlák. Metamathematics of First-Order Arithmetic. Springer Verlag, Berlin, 1993.
[6] J. Johannsen. On the weakness of sharply bounded polynomial induction. In G. Gottlob, A. Leitsch, and D. Mundici, editors, Computational Logic and Proof Theory, volume 713 of Lecture Notes in Computer Science, pages 223-230. Springer Verlag, 1993.
[7] J. Johannsen. On sharply bounded length induction. In H. Kleine Büning, editor, Computer Science Logic, volume 1092 of Lecture Notes in Computer Science, pages 362-367. Springer, 1996.
[8] J. Johannsen. Schwache Fragmente der Arithmetik und Schwellwertschaltkreise beschränkter Tiefe. Dissertation, Universität ErlangenNürnberg, 1996.
[9] D. S. Johnson. A catalog of complexity classes. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science Vol. A, chapter 2, pages 67-161. Elsevier, Amsterdam, 1990.
[10] G. Takeuti. Sharply bounded arithmetic and the function $a-1$. In Logic and Computation, volume 106 of Contemporary Mathematics, pages 281-288. American Mathematical Society, Providence, 1990.
[11] G. Takeuti. RSUV isomorphisms. In P. Clote and J. Krajíček, editors, Arithmetic, Proof Theory and Computational Complexity, volume 23 of Oxford Logic Guides, pages 364-386. Clarendon Press, Oxford, 1993.

[^0]: *The results of this paper are contained in the author's dissertation [8]. Some of the results were already announced in [7].

