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Abstract

We de�ne a property of substructures of models of arithmetic, that

of being length-initial , and show that sharply bounded formulae are ab-

solute between a model and its length-initial submodels. We use this to

prove independence results for some weak fragments of bounded arith-

metic by constructing appropriate models as length-initial submodels

of some given model.

Mathematics Subject Classi�cation: 03F30, 03H15

Introduction

First we review the de�nitions of the theories S

i

2

and T

i

2

of Bounded Arith-

metic introduced by S. Buss [2]: The language of these theories is the lan-

guage of Peano Arithmetic extended by symbols for the functions b

1

2

xc,

jxj := dlog

2

(x + 1)e and x#y := 2

jxj�jyj

. A quanti�er of the form 8x� t ,

9x� t with x not occurring in t is called a bounded quanti�er. Furthermore,

a quanti�er of the form 8x�jtj, 9x�jtj is called sharply bounded. A formula

is called sharply bounded if all quanti�ers in it are sharply bounded.

The class of sharply bounded formulae is denoted �

b

0

or �

b

0

. For i 2 N, let

�

b

i+1

(resp. �

b

i+1

) be the least class containing �

b

i

(resp. �

b

i

) and closed under

conjunction, disjunction, sharply bounded quanti�cation and bounded exis-

tential (resp. universal) quanti�cation. In the standard model, �

b

i

-formulae

describe exactly the sets in �

P

i

, the i

th

level of the Polynomial Time Hier-

archy of computational complexity theory, and likewise for �

b

i

-formulae and

�

The results of this paper are contained in the author's dissertation [8]. Some of the

results were already announced in [7].
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�

P

i

, for i � 1. (All the complexity-theoretic notions mentioned in this paper

can be found in [9].)

The theory T

i

2

is de�ned by a �nite set BASIC of quanti�er-free axioms that

specify the interpretation of the function symbols in the language, plus the

induction scheme for �

b

i

-formulae (�

b

i

-IND). S

i

2

is de�ned by the BASIC

axioms plus the scheme of polynomial induction

'(0) ^ 8x ('(b

1

2

xc)! '(x) ) ! 8x'(x)

for every �

b

i

-formula '(x) (�

b

i

-PIND). By the main result of [2], a function

f with �

b

i

-graph is provably total in S

i

2

i� f 2 F�

P

i

= FP

�

P

i�1

, for i � 1.

The theories R

i

2

were de�ned in various disguises by several authors [4, 1, 11].

Their language is the same as that of S

i

2

extended by additional function

symbols for subtraction

:

and MSP (x; i) := b

x

2

i

c. The set BASIC is

extended by additional quanti�er-free axioms on the new function symbols;

we shall simply call the extended set BASIC also, as it will always be clear

from the context which set is meant. Now R

i

2

is axiomatized by BASIC

plus the scheme of polynomial length induction

'(0) ^ 8x ('(b

1

2

xc)! '(x) ) ! 8x'(jxj)

for every �

b

i

-formula '(x) (�

b

i

-LPIND). R

1

2

is related to the complexity

class uniform NC, since the �

b

1

-de�nable functions of R

1

2

are exactly those

in this class.

Recall the axioms 


2

stating that the function x#

3

y := 2

jxj#jyj

is total,

which is most conveniently expressed as 8x 9y jxj#jxj = jyj, and exp saying

that exponentiation is total, which we can express as 8x9y jyj = x. We shall

construct models as substructures of some model of the theory S

1

2

+ 


2

+

:exp, whose consistency follows from Parikh's Theorem, see e.g. [5].

The model-theoretic property

A fact well-known and extensively used in the study of models of arithmetic

is the absoluteness of bounded formulae between a model and an initial

segment of it. In order to obtain an analogon for sharply bounded formulae,

we introduce the following notion:

De�nition: Let N and M be models of BASIC, N a substructure of M .

Then we say N is length-initial in M , written N �

`

M , if for all a 2 N and

b 2M with b < jaj already b 2 N holds.
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As usual, we call an element a of some model M small , if a � jbj for some

b 2 M , and large otherwise. Hence N �

`

M i� the small elements in N

form an initial segment of the small elements in M .

In the following, barred letters will always denote tuples of variables or

elements whose length is either irrelevant or clear from the context.

Proposition 1 If N �

`

M , then sharply bounded formulae are absolute

between N and M , i.e. for every �

b

0

-formula '(�x) and �a 2 N

N j= '(�a) i� M j= '(�a) :

Proof: This is proved easily by induction on the complexity of the formula

'(�x). The crucial case is '(�x) � 8y�jt(�x)j �(�x; y), where we have

N j= 8y�jt(�a)j �(�a; y)

$ for all b 2 N with b � jt(�a)jM j= �(�a; b)

$ M j= 8y�jt(�a)j �(�a; y) :

The �rst equivalence holds by the induction hypothesis, and the second one

by M �

`

N . �

Actually, the analogy between Prop. 1 and the absoluteness of bounded

formulae w.r.t. initial segments is more than a mere analogy, as the following

considerations show.

A model M of some (su�ciently strong) theory of Bounded Arithmetic can

be viewed as a second-order model M = (logM;M), where logM denotes

the set of small elements in M and for i 2 logM and m 2 M we say

that i 2 m if the ith bit in m is 1. There is also a syntactical translation

mapping a formula ' in the language of Bounded Arithmetic to a second-

order formula '

]

such thatM j= ' i�M j= '

]

. This correspondence between

�rst- and second-order models together with the translation ] is known as

the RSUV -isomorphism [11].

Now N �

`

M holds i� N = (logN;N) is an initial segment of M, and

sharply bounded formulae are mapped by ] to �rst-order bounded formulae.

Therefore the assertion of Prop. 1 and the absoluteness of bounded formulae

are the same modulo the RSUV -isomorphism.

Our main applications of Prop. 1 will be of the following type: If a theory T

has a 8�

b

0

-axiomatization, and we have a modelM j= T and a length initial

submodel N �

`

M , we can conclude N j= T .
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Sharply bounded length induction

Let L

i

2

denote the theory in the language of S

i

2

given by the BASIC axioms

and the scheme of length induction

'(0) ^ 8x ('(x)! '(Sx) ) ! 8x'(jxj)

for each �

b

i

-formula '(x) (�

b

i

-LIND). For i � 1, we have L

i

2

= S

i

2

(see [3]

for a proof).

The proof of the inclusion L

i

2

� S

i

2

is fairly easy and also works for i = 0: to

prove LIND for a formula '(x), apply PIND to '(jxj). The proof of the

opposite inclusion rests mainly on the de�nability of the functions

:

and

MSP in L

1

2

and thus can only be applied to the case i = 0 in the extended

language of R

i

2

.

Therefore, in case i = 0, have L

0

2

� T

0

2

, which is trivial, and L

0

2

� S

0

2

.

Furthermore the �rst inclusion is proper since Takeuti [10] showed that the

following theorem of T

0

2

8x (x = 0 _ 9y x = Sy)

is unprovable in S

0

2

and hence in L

0

2

. This shows that the predecessor and

hence the modi�ed subtraction function

:

cannot be provably total in either

of these theories.

Note that L

0

2

= S

0

2

would imply that S

0

2

is (properly) contained in T

0

2

, but

it is not ruled out yet that these latter two theories are incomparable w.r.t.

inclusion.

As one application of the model-theoretic property above, we shall show

below that L

0

2

�

6=

S

0

2

. We also show that S

0

2

is not 8�

b

0

-axiomatizable.

To make this possible, we need the following fact, which is easily proved:

over the BASIC axioms, �

b

0

-LIND is equivalent to the scheme

8a ['(0) ^ 8x< jaj ('(x) ! '(Sx)) ! '(jaj)] ;

for every sharply bounded formula '(x). Therefore L

0

2

is 8�

b

0

-axiomatizable,

and hence from Prop. 1 we get

Corollary 2 If M j= L

0

2

and N �

`

M , then N j= L

0

2

.

4



A model of L

0

2

with a partial predecessor function

We already know from Takeuti's result for S

0

2

mentioned above and the

inclusion L

0

2

� S

0

2

, that the existence of predecessors is independent from L

0

2

.

As an illustration of the method, we shall now construct a model witnessing

this independence. Let M j= S

1

2

+


2

+ :exp, and de�ne

M

0

:= f a 2M ; a is small g [ f 1#a ; a 2M g :

Hence M

0

contains all small elements of M , plus a prototypical large el-

ement of each length. Let

^

M be the closure of M

0

under addition and

multiplication. We imagine

^

M being built in stages: for i 2 N we de�ne

M

i+1

:= f a+ b ; a; b 2M

i

g [ f a � b ; a; b 2M

i

g

and

^

M :=

S

i2N

M

i

.

Proposition 3

^

M is closed under j:j, b

1

2

c and #.

Proof: Closure under j:j is clear since all small elements of M are in M

0

and hence in

^

M . Closure under # is also easy since for every a; b 2 M ,

a#b = 1#b

1

2

a#bc, and hence a#b 2M

0

.

Now for closure under b

1

2

c: We �rst show that M

0

is closed under b

1

2

c.

This follows from the fact that b

1

2

ac is small i� a is small, and b

1

2

(1#a)c =

1#b

1

2

ac.

Now suppose that for every a 2M

i

b

1

2

ac 2

^

M , and let b 2M

i+1

. Then there

are b

1

; b

2

2M

i

such that b = b

1

+ b

2

or b = b

1

� b

2

. Now we can calculate

b

1

2

(b

1

+ b

2

)c =

(

b

1

2

b

1

c+ b

1

2

b

2

c if b

1

� b

2

is even

b

1

2

b

1

c+ b

1

2

b

2

c+ 1 else

b

1

2

(b

1

� b

2

)c =

(

b

1

2

b

1

c � b

2

if b

1

is even

b

1

2

b

1

c � b

2

+ b

1

2

b

2

c else

and see that in either case b

1

2

bc 2

^

M . �

In particular,

^

M is a substructure of M , and from the de�nition we see that

^

M �

`

M , since

^

M contains all small elements of M . Therefore

^

M j= L

0

2

.

Lemma 4 If for a 2M there is b 2

^

M with Sb = 1#a, then a is small.
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Proof: Recall from [2] that in S

1

2

the function Bit(x; i) giving the value of

the i

th

bit in the binary expansion of x and the operation of length bounded

counting can be de�ned. Hence we can de�ne the function Count(x) :=

]i < jxj (Bit(x; i) = 1) for x 2 M , and show in S

1

2

that Count(a � b) �

Count(a) � Count(b) for � 2 f+; �g.

We shall show below that for every b 2

^

M , the number of bits set is very

small, i.e. Count(b) � jjcjj for some c 2M . On the other hand, if Sb = 1#a,

then Count(b) = jaj, so we get jaj � jjcjj, and thus a � 2jcj, so a is small.

We prove the above claim by induction, using the above de�ned M

i

. If

b 2 M

0

, then either b is small, or b = 1#d for some d 2 M . In the �rst

case, jbj � jjcjj, and therefore Count(b) � jbj � jjcjj for some c 2M . In the

second case, Count(b) = 1.

Now let b 2M

i+1

, and suppose the claim holds for all elements inM

i

. Then

there are b

1

; b

2

2M

i

such that b = b

1

+b

2

or b = b

1

�b

2

. Let Count(b

j

) � jjc

j

jj

for j = 1; 2. Now if b = b

1

+ b

2

, then by the above

Count(b) � jjc

1

jj+ jjc

2

jj � j jc

1

j � jc

2

j+ 1 j � jj2(c

1

#c

2

)jj :

If on the other hand b = b

1

� b

2

, then we have

Count(b) � jjc

1

jj � jjc

2

jj � j jc

1

j#jc

2

j j ;

and by 


2

there is c 2M with jc

1

j#jc

2

j � jcj, and thus Count(b) � jjcjj for

this c. �

From Lemma 4 we immediately get

Theorem 5

^

M j= L

0

2

+ 9x (x 6= 0 ^ 8y Sy 6= x).

Proof: If there is b 2

^

M with Sb = 1#a, then Lemma 4 shows that a is

small. But since M j= :exp, there are large elements in M , and for large a

the element 1#a 2

^

M has no predecessor in

^

M . �

The independence of �

b

0

-PIND

Let again M j= S

1

2

+


2

+:exp. From this model M , we construct a model

~

M j= L

0

2

that does not satisfy S

0

2

.

For x 2M and n 2 N we de�ne x

#n

inductively by x

#0

:= 1, x

#1

:= x and

x

#(n+1)

:= x

#n

#x for n � 1. Choose a large a 2M . Then we de�ne

~

M :=

n

b 2M ; b

#n

< a for all n 2 N

o

[ f b 2M ; b > n � a for all n 2 N g
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We call the �rst set in the union the lower part of

~

M and the second set

in the union the upper part . Note that the upper part is nonempty since

a

2

> n � a for every n 2 N.

Proposition 6

~

M is closed under j:j, b

1

2

c, +, � and #.

Proof: Since M j= 


2

, all small elements of M are in the lower part, since

otherwise a would be small. Hence

~

M is closed under j:j.

If b is in the lower part, then of course b

1

2

bc is in the lower part. On the

other hand, the upper part is closed under b

1

2

c since if b

1

2

bc � n � a, then

b � (3n) � a.

If at least one of b; c is in the upper part, then b � c is in the upper part, for

� 2 f+; �;#g.

Finally, the lower part is closed under #, and thus under + and �. To see

this, let b and c be in the lower part. Then for every n 2 N, (b#c)

#n

�

max(b; c)

#2n

< a, hence b#c is in the lower part. �

So

~

M is a substructure ofM , and moreover

~

M �

`

M since all small elements

of M are in

~

M , and thus

~

M j= L

0

2

. We show that there is a small element

in

~

M that is not the length of any other element of

~

M .

Proposition 7

~

M j= L

0

2

+ 9x; y (x < jyj ^ 8z�y jzj 6= x).

Proof: We shall show the following: If b is in the lower part of

~

M , then

jbj < jaj, and if b is in the upper part of

~

M , then jbj > jaj. Hence the element

jaj 2

~

M is small, but there is no b 2

~

M with jbj = jaj.

So suppose jbj � jaj for some b in the lower part. Then in particular b#b < a,

hence jb#bj � jaj. But jb#bj = jbj

2

+ 1 � jaj � jbj leads to a contradiction.

Dually, suppose jbj � jaj for some b in the upper part. Then 2a < b, hence

jaj+ 1 = j2aj � jbj � jaj, which is likewise impossible. �

On the other hand, S

0

2

proves that every small element is the length of some

other element.

Proposition 8 S

0

2

` 8x; y (x � jyj ! 9z�y jzj = x).

Proof: Consider the following case of �

b

0

-PIND:

j0j < Sa ^ 8x (jb

1

2

xcj < Sa! jxj < Sa)! jbj < Sa

7



By taking the contrapositive of it and using the fact that Sa � 0 is refutable,

we obtain

a < jbj ! 9x (jb

1

2

xcj � a ^ Sjb

1

2

xcj > a)

and hence a < jbj ! 9x (jb

1

2

xcj = a), which implies a < jbj ! 9z jzj = a.

But if jzj = a < jbj, then z < b, so the existential quanti�er can be bounded

by b.

On the other hand, a = jbj ! 9z � b jzj = a is trivial, and combining these,

we get

a � jbj ! 9z � b jzj = a

as required. �

From Theorem 7 and Prop. 8 we immediately have the following

Theorem 9 L

0

2

6` �

b

0

-PIND, hence L

0

2

�

6=

S

0

2

.

This is the �rst example of a situation where the schemes of polynomial

induction and length induction are not equivalent. Furthermore we obtain

Corollary 10 S

0

2

is not axiomatizable by a set of 8�

b

0

-sentences.

Proof: By the above results

~

M cannot be a model of S

0

2

. If S

0

2

were 8�

b

0

-

axiomatizable, M j= S

0

2

and

~

M �

`

M would imply

~

M j= S

0

2

. �

A further conclusion we can draw from this construction is the following:

Corollary 11 The function MSP is not de�nable in L

0

2

.

Proof: The model

~

M j= L

0

2

is not closed under MSP : since a

2

2

~

M , there

is a b 2

~

M with jbj = 2jaj. For this b we have then jMSP (b; jaj)j = jaj,

hence MSP (b; jaj) =2

~

M . �

Towards a model-theoretic proof of Takeuti's result

It would be nice if the method of length-initial submodels could be ex-

tended to yield a model-theoretic proof of Takeuti's independence result,

the unprovability of the existence of predecessors in S

0

2

. By Corollary 10 the

method we have used above is not applicable.

Nevertheless, the possibility remains that the model

^

M j= L

0

2

de�ned above

satis�es S

0

2

, which would give the desired model-theoretic proof. A starting

point could be the following property of

^

M .

8



De�nition: Let N �

`

M , then N is called dense in M if for each a 2 M

such that jaj is small in N there is b 2 N with jbj = jaj.

The property that the model

~

M is not dense in M was used above to show

that

~

M 6j= S

0

2

. Hence the density of a model N in M j= S

0

2

might su�ce for

^

M to satisfy S

0

2

, which would give the desired proof since

^

M is dense in M .

This question remains open, but it is at least possible to prove that

^

M

satis�es some fraction of S

0

2

stronger than L

0

2

. To state this, we need the

following notion:

De�nition: Let M j= BASIC, then a formula '(x) is called stable in M if

for all a; b 2M with jaj = jbj it holds that M j= '(a) i� M j= '(b).

Hence stable properties only depend on the length of an element, in par-

ticular, a formula of the form '(jxj) is stable in every model. Now we can

prove that

^

M satis�es polynomial induction for stable �

b

0

-formulae.

Proposition 12 If N �

`

M j= S

0

2

and N is dense in M , then N satis�es

PIND for stable �

b

0

-formulae.

Proof: Let '(x) 2 �

b

0

be stable in M , and let N j= '(0) and N j=

'(b

1

2

bc) ! '(b) for all b 2 N . Now suppose there is an a 2 N such that

N j= :'(a).

By absoluteness we have M j= '(0) and M j= :'(a), hence there is b 2 M

with M j= '(b

1

2

bc) ^ :'(b). Since N is dense in M there is b

0

2 N with

jb

0

j = jbj, and thus jb

1

2

b

0

cj = jb

1

2

bcj.

Now the stability of '(x) yieldsM j= '(b

1

2

b

0

c)^:'(b

0

), and by absoluteness

this also holds in N , in contradiction to the above. �

Now for the desired model-theoretic proof, it would su�ce to show that

S

0

2

is implied by PIND for stable �

b

0

-formulae. Note that the PIND for

stable �

b

0

-formulae is strictly stronger than �

b

0

-LIND: To prove LIND for

a formula  (x), PIND for the stable formula  (jxj) is used. On the other

hand, the model

~

M j= L

0

2

does not satisfy PIND for stable �

b

0

-formulae,

since the formula jxj < Sa used in the instance of PIND in the proof of

Prop. 8 is stable in every model.

An independence result for R

0

2

In [11] it was shown that R

0

2

is equivalent to the theory given by the BASIC

axioms and �

b

0

-PIND in the language of R

0

2

.

9



In [6] an independence result for (an extension of) R

0

2

was proved by proof-

theoretic means similar to the method of [10]: Let y = b

1

3

xc stand short for

the formula x = 3y _ x = 3y + 1 _ x = 3y + 2.

Theorem 13 8x 9y y = b

1

3

xc is not provable in R

0

2

.

As a corollary to the proof of this theorem given in [6], it follows that R

0

2

cannot �

b

1

-de�ne every function in the very small complexity class uniform

NC

0

. We now give a new proof of Theorem 13 using our model-theoretic

technique. This proof yields the same corollary as the syntactic proof.

First, we need the fact that R

0

2

is 8�

b

0

-axiomatizable, namely by the BASIC

axioms and the scheme

8a

h

A(0) ^ 8x�jaj

�

A(b

1

2

xc)! A(x)

�

! 8x�jajA(x)

i

for every �

b

0

-formula A(x). This scheme obviously implies �

b

0

-LPIND, and

it can be proved by PIND on the variable a in the �

b

0

-formula [: : : ].

Let M j= S

1

2

+ 


2

+ :exp, regarded as a structure for the language of R

0

2

.

For a 2 M , let blk(a) denote the number of blocks of zeros and ones in a,

i.e.

blk(a) := ]i< jaj Bit(a; i) 6= Bit(a; i+ 1) ;

which is well-de�ned since this function is �

b

1

-de�nable in S

1

2

. We consider

the set of those elements in M with a very small number of blocks

�

M := f a 2M ; blk(a) � jjbjj for some b 2M g :

Proposition 14

�

M is a substructure of M .

Proof: The inequalities blk(jaj) � jjajj, blk(a#b) � 2, blk(b

1

2

ac) � blk(a)

and blk(MSP (a; i)) � blk(a) are trivial, hence

�

M is closed under these

operations. We shall now show that for � 2 f+;

:

; �g, blk(a � b) is bounded

by a polynomial in blk(a) and blk(b). The proofs can be formalized in S

1

2

,

and since M j= 


2

, this shows that

�

M is closed under these operations.

Lemma 15 blk(a+ 1) � blk(a) + 1.

Proof: If a is even, then the last bit in a is changed to one, whereby at most

one new block is introduced. If a is odd, then the last block of ones is changed

to zero, and the rightmost zero is changed to one; this also introduces at

most one new block. �

10



Lemma 16 If a � b, then blk(a+ b) � blk(a) + 2blk(b) + 1.

Proof: We �rst prove that blk(a + b) � blk(a) + 2blk(b) in case that b is

even, by induction on blk(b). The base case, blk(b) = 0, is trivial. For the

inductive step, let LSP (a; i) denote amod2

i

, the number consisting of the

last i bits of a, and de�ne

i

b

:= �i< jbjBit(b; i) = 1

j

b

:= �j< jbj j > i

b

^Bit(b; j) = 0

a

0

:=MSP (a; j

b

) b

0

:=MSP (b; j

b

)

a

0

:= LSP (a; i

b

) a

1

:=MSP (LSP (a; j

b

); i

b

)

where we treat a

0

and a

1

as bit-strings, possibly with leading zeroes. Ob-

viously, we have blk(a

0

) + blk(a

1

) + blk(a

0

) � blk(a) + 2, and blk(b) =

blk(b

0

) + 2. Furthermore, since b

0

is even, the inductive hypothesis assures

that blk(a

0

+ b

0

) � blk(a

0

) + 2blk(b

0

).

Now if a

1

consists entirely of zeroes, then a+b is given by a

0

+b

0

concatenated

with a string of ones of length ja

1

j followed by a

0

. This gives us

blk(a+ b) � blk(a

0

+ b

0

) + blk(a

0

) + 1

� blk(a

0

) + 2blk(b

0

) + blk(a

0

) + 1

� blk(a) + 2blk(b

0

) + 3

� blk(a) + 2blk(b) :

Otherwise, let ~a

1

result from a

1

by replacing the rightmost block of zeroes

by ones, the rightmost one by a zero and leaving the rest unchanged. Then

a + b is given by a

0

+ b

0

+ 1 concatenated with ~a

1

followed by a

0

. Since

blk(~a

1

) � blk(a

1

) + 1, we can calculate

blk(a+ b) � blk(a

0

+ b

0

+ 1) + blk(~a

1

) + blk(a

0

)

� blk(a

0

+ b

0

) + blk(a

1

) + blk(a

0

) + 2

� blk(a

0

) + 2blk(b

0

) + blk(a

1

) + blk(a

0

) + 2

� blk(a) + 2blk(b

0

) + 4

� blk(a) + 2blk(b) :

Now if b is odd, let

i

b

:= �i< jbjBit(b; i) = 0

a

0

:=MSP (a; i

b

) b

0

:=MSP (b; i

b

)

a

1

:= LSP (a; i

b

) ;

11



where again we treat a

1

as a bit-string with possibly some leading zeroes.

Then we have blk(a

0

) + blk(a

1

) � blk(a) + 1 and blk(b) = blk(b

0

) + 1, and

since b

0

is even, we get blk(a

0

+ b

0

) � blk(a

0

) + 2blk(b

0

) from the above.

Now if a

1

consists entirely of zeroes, a + b is given by a

0

+ b

0

concatenated

with a string of ones of length ja

1

j, hence

blk(a+ b) � blk(a

0

+ b

0

) + 1

� blk(a

0

) + 2blk(b

0

) + 1

� blk(a) + 2blk(b) + 1 :

Otherwise, let ~a

1

be de�ned as above, then a + b is given by a

0

+ b

0

+ 1

concatenated with ~a

1

, and we can calculate

blk(a+ b) � blk(a

0

+ b

0

+ 1) + blk(~a

1

)

� blk(a

0

+ b

0

) + blk(a

1

) + 2

� blk(a

0

) + 2blk(b

0

) + blk(a

1

) + 2

� blk(a) + 2blk(b

0

) + 3

� blk(a) + 2blk(b) + 1 :

This completes the proof of the lemma. �

This upper bound is indeed optimal, as the following example shows: Let

b :=

n

P

i=0

7 � 2

6i

and a := 2b. Then in binary we calculate

a = 1110(001110)

n

b = 111(000111)

n

a+ b = 10101(010101)

n

so we have blk(b) = 2n + 1, blk(a) = 2n + 2 and blk(a + b) = 6n + 5 =

blk(a) + 2blk(b) + 1.

Lemma 17 blk(a

:

b) � blk(a) + 2blk(b) + 1.

Proof: If a < b, then a

:

b = 0, hence the claim is trivially true. So let

a � b, let c := 2

jaj+1

� 1 and calculate a

:

b = c � ((c � a) + b. Then

blk(c�a) = blk(a)+1, and since jc�aj = jcj we have blk(c� ((c�a)+b)) =

12



blk((c� a) + b)� 1, hence we can estimate

blk(a

:

b) = blk(c� ((c � a) + b))

� blk((c � a) + b)� 1

� blk(c� a) + 2 blk(b)

= blk(a) + 2 blk(b) + 1 : �

Lemma 18 blk(ab) � 3 blk(a) blk(b) + 6blk(a) + 4blk(b) + 6.

Proof: We calculate a � b using the elementary school algorithm as

a � b =

jbj

X

i=0

a � Bit(b; i) � 2

i

:

Now let A := d

blk(b)

2

e, and de�ne inductively for k � A

b

0

:= b

i

k

:= �i< jb

k

jBit(b

k

; i) = 1

j

k

:= �j< jb

k

j Bit(b

k

; i

k

+ j) = 0

b

k+1

:=MSP (b

k

; i

k

+ j

k

)

and s

k

:= i

k

+

P

k�1

m=0

i

m

+ j

m

. Then the above sum can be rewritten as

a � b =

A

X

k=0

j

k

X

m=0

a � 2

s

k

+m

=

A

X

k=0

(2

j

k

+1

� 1) � a � 2

s

k

=:

A

X

k=0

c

k

:

Now for each of the terms c

k

we obtain

blk(c

k

) = blk((a � 2

j

k

+1

� a) � 2

s

k

)

� blk(a � 2

j

k

+1

� a) + 1

� blk(a � 2

j

k

+1

) + 2 blk(a) + 2

� 3 blk(a) + 3 ;

13



hence we can calculate

blk(a � b) = blk(

A

X

i=0

c

k

)

� (1 + 2A) blk(c

k

) +A

� (1 + 2A) (3 blk(a) + 3) +A

= (6A+ 3) blk(a) + 7A+ 3 ;

and using the de�nition of A we obtain

blk(a � b) � (3 blk(b) + 6) blk(a) + 4 blk(b) + 6 ;

which completes the proof of the lemma and Prop. 14. �

Hence

�

M is a substructure ofM , and since all small elements ofM are in

�

M ,

we have

�

M �

`

M , and thus

�

M j= R

0

2

. Therefore the following proposition

establishes Theorem 13.

Proposition 19

�

M j= :8x 9y y = b

1

3

xc.

Proof: Consider b := 2

jaj

� 1 for some a 2M , then in b every bit is 1, and

thus blk(b) = 1 and so b 2

�

M . Let c := b

1

3

bc 2 M , then c is the number

with jcj = jbj � 1 with every other bit 1, as is easily seen by calculating

3c = 2c + c. Hence blk(c) = jcj, and so c 2

�

M only if c and thus b is small.

But M j= :exp, and thus for a large b as above c = b

1

3

bc =2

�

M . �

From this proof of Theorem 13, as well as from the syntactic proof given in

[6], we can furthermore conclude

Theorem 20 There is a function in uniform NC

0

which is not �

b

1

-de�nable

in R

0

2

.

Proof: Consider the function g de�ned by g(x) := b

1

3

(2

jxj

� 1)c. The value

g(x) is the number y with jyj = jxj � 1 in which every other bit is 1. This

function is easily seen to be in uniform NC

0

.

For the numbers b with blk(b) = 1 used in the above proof b = 2

jbj

�1 holds,

hence for these numbers g(b) = b

1

3

bc. Hence the proof also shows that the

function g is not provably total in R

0

2

. �

The �

b

0

-comprehension scheme is the scheme of axioms

9y<2

jaj

8i< jaj (Bit(y; i) = 1 $ A(i))

for every �

b

0

-formula A(i).

14



Corollary 21 The �

b

0

-comprehension scheme is not provable in R

0

2

.

To see this, just observe that the function g above can be easily de�ned using

the comprehension axiom for the formula A(i) :� imod2 = jajmod2. This

shows that R

0

2

cannot even prove the comprehension scheme for equations,

since xmod2 can be expressed as a term in the language of R

0

2

.
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