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Abstract

We define a property of substructures of models of arithmetic, that
of being length-initial, and show that sharply bounded formulae are ab-
solute between a model and its length-initial submodels. We use this to
prove independence results for some weak fragments of bounded arith-
metic by constructing appropriate models as length-initial submodels
of some given model.

Mathematics Subject Classification: 03F30, 03H15

Introduction

First we review the definitions of the theories S and T3 of Bounded Arith-
metic introduced by S. Buss [2]: The language of these theories is the lan-
guage of Peano Arithmetic extended by symbols for the functions L%IJ,
lz| := [logy(z + 1)] and z#y := 211 A quantifier of the form Vaz <t ,
dx <t with z not occurring in ¢ is called a bounded quantifier. Furthermore,
a quantifier of the form Vz <|t|, 3z <|t| is called sharply bounded. A formula
is called sharply bounded if all quantifiers in it are sharply bounded.

The class of sharply bounded formulae is denoted % or ITj. For i € N, let
22, (resp. I1Z, ;) be the least class containing I1? (resp. £?) and closed under
conjunction, disjunction, sharply bounded quantification and bounded exis-
tential (resp. universal) quantification. In the standard model, :¢-formulae
describe exactly the sets in 37, the i*® level of the Polynomial Time Hier-
archy of computational complexity theory, and likewise for Hi-’—formulae and

*The results of this paper are contained in the author’s dissertation [8]. Some of the
results were already announced in [7].



I17, for i > 1. (All the complexity-theoretic notions mentioned in this paper
can be found in [9].)

The theory T3 is defined by a finite set BASTC of quantifier-free axioms that
specify the interpretation of the function symbols in the language, plus the
induction scheme for ¥¢-formulae (X¢-IND). S} is defined by the BASIC
axioms plus the scheme of polynomial induction

0(0) AVa (p(l57]) = ple)) — Vap(z)

for every X0-formula ¢(z) (X2-PIND). By the main result of [2], a function
f with X¢-graph is provably total in S iff f € FAF = FPEf)—l, for i > 1.

The theories R} were defined in various disguises by several authors [4, 1, 11].
Their language is the same as that of Si extended by additional function
symbols for subtraction -~ and MSP(z,i) := |5;]. The set BASIC is
extended by additional quantifier-free axioms on the new function symbols;
we shall simply call the extended set BASIC also, as it will always be clear
from the context which set is meant. Now R} is axiomatized by BASIC

plus the scheme of polynomial length induction

(0) /\Vx(w(%xJ) = () = Vae(lz)

for every X0-formula ¢(z) (Z2-LPIND). R) is related to the complexity
class uniform NC, since the ¥-definable functions of R} are exactly those
in this class.

Recall the axioms 2y stating that the function z #3y := 2lzl#lyl is total,
which is most conveniently expressed as Vz Jy |z|#|z| = |y|, and exp saying
that exponentiation is total, which we can express as Vz 3y |y| = . We shall
construct models as substructures of some model of the theory S + Qy +
—exp, whose consistency follows from Parikh’s Theorem, see e.g. [5].

The model-theoretic property

A fact well-known and extensively used in the study of models of arithmetic
is the absoluteness of bounded formulae between a model and an initial
segment of it. In order to obtain an analogon for sharply bounded formulae,
we introduce the following notion:

Definition: Let N and M be models of BASIC, N a substructure of M.
Then we say N is length-initial in M, written N C; M, if for all a € N and
b € M with b < |a| already b € N holds.



As usual, we call an element a of some model M small, if a < |b| for some
b € M, and large otherwise. Hence N Cy, M iff the small elements in N
form an initial segment of the small elements in M.

In the following, barred letters will always denote tuples of variables or
elements whose length is either irrelevant or clear from the context.

Proposition 1 If N C, M, then sharply bounded formulae are absolute
between N and M, i.e. for every $4-formula o(z) and a € N

N Ep(a) iff M = p(a) .

Proof: This is proved easily by induction on the complexity of the formula
©(Z). The crucial case is p(Z) = Vy <|t(Z)| 0(Z,y), where we have

N vy <|t(a)| 0(a,y)
< forallbe N with b < |t(a)| M = 0(a,b)
< M Evy<|t@)o@a,y) .

The first equivalence holds by the induction hypothesis, and the second one
by M Cy N. O

Actually, the analogy between Prop. 1 and the absoluteness of bounded
formulae w.r.t. initial segments is more than a mere analogy, as the following
considerations show.

A model M of some (sufficiently strong) theory of Bounded Arithmetic can
be viewed as a second-order model M = (log M, M), where log M denotes
the set of small elements in M and for ¢ € logM and m € M we say
that ¢+ € m if the ith bit in m is 1. There is also a syntactical translation
mapping a formula ¢ in the language of Bounded Arithmetic to a second-
order formula f such that M = ¢ iff 9 |= of. This correspondence between
first- and second-order models together with the translation f is known as
the RSUV -isomorphism [11].

Now N C; M holds iff = (log N, N) is an initial segment of 91, and
sharply bounded formulae are mapped by § to first-order bounded formulae.
Therefore the assertion of Prop. 1 and the absoluteness of bounded formulae
are the same modulo the RSUV -isomorphism.

Our main applications of Prop. 1 will be of the following type: If a theory T
has a VX}-axiomatization, and we have a model M |= T and a length initial
submodel N Cy M, we can conclude N = 1T.



Sharply bounded length induction

Let L denote the theory in the language of S} given by the BASTC axioms
and the scheme of length induction

p(0) AVz (p(z) = (Sz)) — Vap(lz])

for each Xt-formula p(z) (X2-LIND). For i > 1, we have Li = S} (see [3]
for a proof).

The proof of the inclusion L} C S} is fairly easy and also works for i = 0: to
prove LIND for a formula p(z), apply PIND to ¢(]z]). The proof of the
opposite inclusion rests mainly on the definability of the functions = and
MSP in L} and thus can only be applied to the case i = 0 in the extended
language of Rj.

Therefore, in case i = 0, have L) C T¥, which is trivial, and L3 C S9.
Furthermore the first inclusion is proper since Takeuti [10] showed that the
following theorem of TY

Ve (x=0v 3y z = Sy)

is unprovable in S9 and hence in LY. This shows that the predecessor and
hence the modified subtraction function = cannot be provably total in either
of these theories.

Note that L3 = SY would imply that S9 is (properly) contained in 7%, but
it is not ruled out yet that these latter two theories are incomparable w.r.t.
inclusion.

As one application of the model-theoretic property above, we shall show
below that L3 & S3. We also show that S is not V¥-axiomatizable.

To make this possible, we need the following fact, which is easily proved:
over the BASTC axioms, ©3-LIND is equivalent to the scheme

Va [p(0) AV <|a| (p(z) = (Sx)) = ¢(|a])] ,

for every sharply bounded formula ¢(z). Therefore L3 is VX§-axiomatizable,
and hence from Prop. 1 we get

Corollary 2 If M = LY and N Cy M, then N = L.



A model of LY with a partial predecessor function

We already know from Takeuti’s result for S mentioned above and the
inclusion L C S, that the existence of predecessors is independent from L.
As an illustration of the method, we shall now construct a model witnessing
this independence. Let M |= S3 + Qs + —exp, and define

My:={aeM;aissmall}U{1l#a;ae M} .

Hence Mj contains all small elements of M, plus a prototypical large el-
ement of each length. Let M be the closure of My under addition and
multiplication. We imagine M being built in stages: for ¢ € N we define

My :={a+b;a,beM;}U{a-b;a,be M}

and M := Uien M;.
Proposition 3 M is closed under |.|, |3 and #.

Proof: Closure under |.| is clear since all small elements of M are in M,
and hence in M. Closure under # is also easy since for every a,b € M,
a#b = 1#[%@#“, and hence a#b € M.

Now for closure under |$|: We first show that M is closed under |1].

This follows from the fact that [§a] is small iff a is small, and | §(1#a)]
14 3a).

Now suppose that for every a € M; L%a] € M, andlet b € M; 1. Then there
are by, by € M; such that b = by + by or b = by - bo. Now we can calculate

I
I

- by if b; is even
by + [ ba] else

bQJ if b1 . b2 1S even
ba] +1 else

iy

L%(bl +b)] =

e
D=0

——

| — | —
NN Do)
S O S O
— =

I S N E—

30ub) =

——

and see that in either case b € M. O

In particular, M is a substructure of M, and from the definition we see that
M Cy M, since M contains all small elements of M. Therefore M = LY.

Lemma 4 If for a € M there is b € M with Sb = 1#a, then a is small.



Proof: Recall from [2] that in S3 the function Bit(z,4) giving the value of
the i*" bit in the binary expansion of  and the operation of length bounded
counting can be defined. Hence we can define the function Count(z) :=
ti < |z| (Bit(z,i) = 1) for x € M, and show in S} that Count(a o b) <
Count(a) o Count(b) for o € {+,-}.

We shall show below that for every b € M, the number of bits set is very
small, i.e. Count(b) < ||c|| for some ¢ € M. On the other hand, if Sb = 1#a,
then Count(b) = |a|, so we get |a| <||c||, and thus a < 2|c|, so a is small.

We prove the above claim by induction, using the above defined M;. If
b € My, then either b is small, or b = 1#d for some d € M. In the first
case, |b| <||c||, and therefore Count(b) < |b| < ||c|| for some ¢ € M. In the
second case, Count(b) = 1.

Now let b € M;11, and suppose the claim holds for all elements in M;. Then
there are by, by € M; such that b = by +by or b = by -by. Let Count(bj) < ||c;|
for j = 1,2. Now if b = by + by, then by the above

Count(b) < |1 + ||e2|| < [ler] - [e2] + 1] < [|2(cr#e2)]] -
If on the other hand b = by - by, then we have
Count(b) < [le1|| - [lez|| < |ler]#lea| |

and by Qg there is ¢ € M with |c1|#|c2] < |¢|, and thus Count(b) < ||c|| for
this c. O

From Lemma 4 we immediately get
Theorem 5 M = LY + 3z (z # 0 AVy Sy # z).

Proof: If there is b € M with Sb = 1#a, then Lemma 4 shows that a is
small. But since M = —exp, there are large elements in M, and for large a
the element 1#a € M has no predecessor in M. O

The independence of X}-PIND

Let again M = S3 4+ Qs + =exp. From this model M, we construct a model
M = LY that does not satisfy S9.

For € M and n € N we define z#" inductively by z#° := 1, z#! := z and
g# ) = g #ndiy for n > 1. Choose a large a € M. Then we define

M::{bEM;b#"<aforallnEN}U{bEM;b>n-af0rallnEN}

6



We call the first set in the union the lower part of M and the second set
in the union the upper part. Note that the upper part is nonempty since
a’? > n -a for every n € N.

Proposition 6 M is closed under ||, L%J, +, - and #.

Proof: Since M = Qo, all small elements of M are in the lower part, since
otherwise a would be small. Hence M is closed under |.|.

If b is in the lower part, then of course L%b] is in the lower part. On the
other hand, the upper part is closed under L%J since if L%b] < n-a, then
b < (3n)-a.

If at least one of b, ¢ is in the upper part, then bo c is in the upper part, for
o€ {-l-, ° #}

Finally, the lower part is closed under #, and thus under + and -. To see

this, let b and ¢ be in the lower part. Then for every n € N, (b#c)#" <
max (b, ¢)#%" < a, hence b#c is in the lower part. O

So M isa substructure of M, and moreover M C, M since all small elements
of M are in M, and thus M = LY. We show that there is a small element
in M that is not the length of any other element of M.

Proposition 7 M = L3 + 3z,y (z < |y| AVz<y|z| # z).

Proof: We shall show the following;: If~ b is in the lower part of M , then
b| < |al, and if b is in the upper part of M, then [b] > |a|. Hence the element
la| € M is small, but there is no b € M with |b| = |a|.

So suppose |b| > |a| for some b in the lower part. Then in particular b#b < a,
hence [b#b| < |a|. But [b#b| = |b]> + 1 < |a| < |b| leads to a contradiction.

Dually, suppose |b] < |a| for some b in the upper part. Then 2a < b, hence
la| +1 = |2a| < |b| < |a|, which is likewise impossible. O

On the other hand, S proves that every small element is the length of some
other element.

Proposition 8 SY FVz,y (z < |y| — I2<y |2| = 7).
Proof: Consider the following case of X3-PIND:

1
0] < Sa/\Vac(|L§:I;J| < Sa — |z| < Sa) — |b] < Sa



By taking the contrapositive of it and using the fact that Sa < 0 is refutable,
we obtain

1 1
a < |b| —>E|a:(|[§xj| Sa/\S|L§xJ| > a)

and hence a < |b| = 3z (|[32]| = a), which implies a < |b] = 3z |z| = a.
But if |z| = a < |b], then z < b, so the existential quantifier can be bounded
by b.

On the other hand, a = |b| — 3z < b |z| = a is trivial, and combining these,
we get

a<|p|—=3Fz<blz|=a
as required. O

From Theorem 7 and Prop. 8 we immediately have the following
Theorem 9 L3 I/ S5-PIND, hence LY & S9.

This is the first example of a situation where the schemes of polynomial
induction and length induction are not equivalent. Furthermore we obtain

Corollary 10 SY is not aziomatizable by a set of V¥4 -sentences.

Proof: By the above results M cannot be a model of S9. If SY were VE3-
axiomatizable, M = SY and M C;, M would imply M = S9. O

A further conclusion we can draw from this construction is the following:
Corollary 11 The function MSP is not definable in LS.

Proof: The model M |= LY is not closed under MSP: since a®> € M, there
is a b€ M with [b| = 2|a|. For this b we have then |[MSP(b, |a|)| = |al,
hence MSP(b,|a|) ¢ M. O

Towards a model-theoretic proof of Takeuti’s result

It would be nice if the method of length-initial submodels could be ex-
tended to yield a model-theoretic proof of Takeuti’s independence result,
the unprovability of the existence of predecessors in S9. By Corollary 10 the
method we have used above is not applicable.

Nevertheless, the possibility remains that the model M = LY defined above
satisfies S9, which would give the desired model-theoretic proof. A starting
point could be the following property of M.



Definition: Let N C, M, then N is called dense in M if for each a € M
such that |a| is small in N there is b € N with |b| = |a].

The property that the model M is not dense in M was used above to show
that M [~ SY. Hence the density of a model N in M |= S$ might suffice for
M to satisfy S9, which would give the desired proof since M is dense in M.

This question remains open, but it is at least possible to prove that M
satisfies some fraction of SY stronger than L3. To state this, we need the
following notion:

Definition: Let M = BASIC, then a formula ¢(z) is called stable in M if
for all a,b € M with |a| = |b| it holds that M = p(a) iff M = ¢(b).

Hence stable properties only depend on the length of an element, in par-
ticular, a formula of the form ¢(|z|) is stable in every model. Now we can
prove that M satisfies polynomial induction for stable Zg—formulae.

Proposition 12 If N C, M = SY and N is dense in M, then N satisfies
PIND for stable ¥4-formulae.

Proof: Let o(z) € X% be stable in M, and let N | ¢(0) and N =

¢(L3b]) — @(b) for all b € N. Now suppose there is an a € N such that

N E ~g(a).
By absoluteness we have M = ¢(0) and M = —¢(a), hence there is b € M
with M = ¢(|$b]) A —p(b). Since N is dense in M there is b’ € N with
|| = [bl, and thus |[30']| = |[5]].

Now the stability of ¢(z) yields M |= ¢(|56']) A—p(b'), and by absoluteness
this also holds in N, in contradiction to the above. O

Now for the desired model-theoretic proof, it would suffice to show that
S9 is implied by PIND for stable Zg—formulae. Note that the PIND for
stable X8-formulae is strictly stronger than X3-LIN D: To prove LIN D for
a formula 1 (z), PIND for the stable formula v (|z|) is used. On the other
hand, the model M [= L9 does not satisfy PIND for stable 24-formulae,
since the formula |z| < Sa used in the instance of PIND in the proof of
Prop. 8 is stable in every model.

An independence result for R)

In [11] it was shown that R is equivalent to the theory given by the BASIC
axioms and $j-PIND in the language of RY.



In [6] an independence result for (an extension of) R was proved by proof-
theoretic means similar to the method of [10]: Let y = |+z] stand short for
the formula x =3yvz =3y+1vz =3y + 2.

Theorem 13 Vz 3y y = |1z] is not provable in RY.

As a corollary to the proof of this theorem given in [6], it follows that R
cannot X%-define every function in the very small complexity class uniform
NC°. We now give a new proof of Theorem 13 using our model-theoretic
technique. This proof yields the same corollary as the syntactic proof.

First, we need the fact that R is VEg—aXiomatizable, namely by the BASIC
axioms and the scheme

Va [A(O) Az < al (A(L%xj) — A(z)) = Vz<|al A(x)]

for every X3-formula A(z). This scheme obviously implies X3-LPIN D, and
it can be proved by PIND on the variable a in the Z}-formula [...].

Let M = S3 + Q9 + —exp, regarded as a structure for the language of RY.
For a € M, let blk(a) denote the number of blocks of zeros and ones in a,
ie.

blk(a) := fi <|a| Bit(a,i) # Bit(a,i + 1),
which is well-defined since this function is $¢-definable in S3. We consider
the set of those elements in M with a very small number of blocks

M :={a € M ; blk(a) < ||b| for some be M} .
Proposition 14 M is a substructure of M.

Proof. The inequalities blk(|a|) < ||a||, blk(a#b) < 2, blk(|3a]) < blk(a)
and blk(MSP(a,i)) < blk(a) are trivial, hence M is closed under these
operations. We shall now show that for o € {4, =}, blk(a o b) is bounded
by a polynomial in blk(a) and blk(b). The proofs can be formalized in S,
and since M = Qo, this shows that M is closed under these operations.

Lemma 15 blk(a + 1) < blk(a) + 1.

Proof: If a is even, then the last bit in a is changed to one, whereby at most
one new block is introduced. If a is odd, then the last block of ones is changed
to zero, and the rightmost zero is changed to one; this also introduces at
most one new block. O
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Lemma 16 If a > b, then blk(a + b) < blk(a) + 2blk(b) + 1

Proof: We first prove that blk(a + b) < blk(a) + 2blk(b) in case that b is
even, by induction on blk(b). The base case, blk(b) = 0, is trivial. For the
inductive step, let LSP(a,4) denote a mod 2?, the number consisting of the
last ¢ bits of a, and define

ip := pi<|b| Bit(b,i) =1
b = pj<l|bl § > iy A Bit(b,j) =0
= MSP(aa.]b) b= MSP(bajb)
ap := LSP(a,ip) ay := MSP(LSP(a,jp),p)
where we treat ag and a; as bit-strings, possibly with leading zeroes. Ob-
viously, we have blk(a’) + blk(a1) + blk(ag) < blk(a) + 2, and blk(b) =

blk(d') + 2. Furthermore, since b’ is even, the inductive hypothesis assures
that blk(a’ + b") < blk(a") + 2blk(d').

Now if a; consists entirely of zeroes, then a+b is given by a’+b' concatenated
with a string of ones of length |a;| followed by ay. This gives us
blk(a + b) < blk(a' + b') + blk(ag) + 1
< blk(a') + 2blk(b") + blk(ag) +
< blk(a) + 2blk(V') + 3
< blk(a) + 2blk(b) .

Otherwise, let a; result from a; by replacing the rightmost block of zeroes
by ones, the rightmost one by a zero and leaving the rest unchanged. Then
a + b is given by @' + b + 1 concatenated with a; followed by ag. Since
blk(a1) < blk(ay) + 1, we can calculate
blk(a 4+ b) < blk(a’ + b+ 1) + blk(a;) + blk(ao)

< blk(a" + ') + blk(ay) + blk(ag) + 2

< blk(a’) + 2blk(b') + blk(a1) + blk(ag) +

< blk(a) + 2blk(b') + 4

< blk(a) 4+ 2blk(b) .

Now if b is odd, let

ip := pi<|b| Bit(b,i) =0
= MSP(a,iy) b := MSP(b,iy)
al = LSP(a,ib) ,

11



where again we treat a; as a bit-string with possibly some leading zeroes.
Then we have blk(a') + blk(a;) < blk(a) + 1 and blk(b) = blk(d') + 1, and
since b’ is even, we get blk(a' + b") < blk(a") + 2blk(b’) from the above.

Now if a1 consists entirely of zeroes, a + b is given by a’ 4+ b’ concatenated
with a string of ones of length |a;|, hence

blk(a + b) < blk(a’' +b') +1
< blk(a') + 2blk(b') + 1
< blk(a) + 2blk(b) + 1

Otherwise, let a; be defined as above, then a + b is given by a’ + b + 1
concatenated with a;, and we can calculate

blk(a + b) < blk(a' 4+ b’ + 1) + blk(ay)
lk(a' + b') + blk(a;) + 2
lk(a') + 2blk(b") + blk(a;) +
lk(a) + 2blk(b') + 3

Ik(

a) + 2blk(b) +

VAN VANR VAN VARSI VAN
CJ"CJ"O"O"O“

This completes the proof of the lemma. O
This upper bound is indeed optimal, as the following example shows: Let
b:= io 7-25 and a := 2b. Then in binary we calculate
i=
a= 1110(001110)"
b= 111(000111)™
a+b= 10101(010101)"

so we have blk(b) = 2n + 1, blk(a) = 2n + 2 and blk(a + b) = 6n + 5 =
blk(a) + 2 blk(b) + 1

Lemma 17 blk(a = b) < blk(a) + 2blk(b) + 1
Proof: If a < b, then a -b = 0, hence the claim is trivially true. So let

a > b, let ¢ := 21"l — 1 and calculate a ~=b = ¢ — ((¢c — a) + b. Then
blk(¢—a) = blk(a) + 1, and since |c—a| = |¢| we have blk(c— ((c—a)+b)) =

12



blk((¢ — a) + b) — 1, hence we can estimate

VAN
=
—
=~
—_~ o~~~
—~
o
|
S
~—
_l.
=
~
|
—

Lemma 18 blk(ab) < 3 blk(a) blk(b) + 6 blk(a) + 4 blk(b) + 6.

Proof: We calculate a - b using the elementary school algorithm as

1o
a-b=>Y a-Bit(hi) 2".
=0

Now let A := [%(b)], and define inductively for £ < A

bop:=0b

i 1= pi<|bg| Bit(bg,1) =1

Jik = pj <|bg| Bit(bg,ir +j) =0
bgy1 := MSP(bg,ir + jr)

and s = 1 + Zf,;lo im + Jm- Then the above sum can be rewritten as

A gk
a-szZa-Zsker

k=0 m=0

A A
:Z:(QJ’“Jrl—l)-a-?s’c ::ch.

k=0 k=0

Now for each of the terms ¢, we obtain

blk(cg) = blk((a - 27k T — @) - 25%)
< blk(a -2+ —a) +1
< blk(a - 27¢1) 4+ 2 blk(a) + 2
< 3 blk(a) + 3,

13



hence we can calculate

A

blk(a - b) = blk(D  cx)
=0

(142 A4) blk(cy) + A
(142 4) (3 blk(a) +3) + A
— (6A+3) blk(a) +TA+3,

<
<

and using the definition of A we obtain
blk(a - b) < (3 blk(b) + 6) blk(a) + 4 blk(b) + 6,

which completes the proof of the lemma and Prop. 14. O

Hence M is a substructure of M , and since all small elements of M are in M ,
we have M Cy M, and thus M = RY. Therefore the following proposition
establishes Theorem 13.

Proposition 19 M = —Vz Jyy = [32].

Proof: Consider b := 2%l —1 for some a € M, then in b every bit is 1, and

thus blk(b) = 1 and so b € M. Let ¢ := |3b] € M, then c is the number

with |¢| = |b] — 1 with every other bit 1, as is easily seen by calculating
3¢ = 2c¢ + ¢. Hence blk(c) = ||, and so ¢ € M only if ¢ and thus b is small.
But M [= —exp, and thus for a large b as above ¢ = [$b] ¢ M. O

From this proof of Theorem 13, as well as from the syntactic proof given in
[6], we can furthermore conclude

Theorem 20 There is a function in uniform NC° which is not $8-definable
in RY.

Proof: Consider the function g defined by g(z) := L%(?"""' —1)]. The value
g(z) is the number y with |y| = |z| — 1 in which every other bit is 1. This
function is easily seen to be in uniform NC©.

For the numbers b with blk(b) = 1 used in the above proof b = 2/°/ —1 holds,
hence for these numbers g(b) = |+b]. Hence the proof also shows that the
function g is not provably total in RY. O

The %8-comprehension scheme is the scheme of axioms
y <219 vi<|a| (Bit(y,i) =1 < A(i))

for every ¥8-formula A(3).
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Corollary 21 The Zg—comprehension scheme is not provable in RY.

To see this, just observe that the function g above can be easily defined using
the comprehension axiom for the formula A(7) := imod 2 = |a| mod 2. This
shows that R cannot even prove the comprehension scheme for equations,
since x mod 2 can be expressed as a term in the language of RY.

Acknowledgements: 1 would like to thank Stephen Bloch, Peter Clote
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of the paper.
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