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Abstract

The bounded arithmetic theory C0
2 of [9], which is

closely related to the complexity class DLogTime-
uniform TC0, is extended by a function symbol and
axioms for integer division, which is not known to be
in DLogTime-uniform TC0. About this extended theory
C0

2 [div], two main results are proved:

1. The Σb
1-definable functions of C0

2 [div] are exactly
Constable’s class K, a function algebra whose precise
complexity-theoretic nature is yet to be determined.
This also yields the new upper bound K ⊆ uniform
NC2.

2. The ∆b
1-theorems of C0

2 [div] do not have Craig-
interpolants of polynomial circuit size, unless the
Diffie-Hellman key exchange protocol is insecure.

1 Introduction

The class K was introduced by Constable [7] as
a natural feasible analog of the elementary recursive
functions. It is defined to be the least class that con-
tains the basic arithmetic operations, and is closed un-
der composition and the formation of short iterated
sums and products, i.e. sums and products of loga-
rithmically many terms. It was claimed in [7] with-
out proof that K contains exactly the polynomial time
computable functions, but this seems to be unlikely
now, as we know from Clote [5] that K is contained
in uniform NC. It is also shown in [5] that K con-
tains DLogTime-uniform TC0. An exact complexity-
theoretic characterization of K is yet to be given.

In [9], we defined a bounded arithmetic theory C0
2

whose Σb
1-definable functions (the provably total func-

tions whose graphs can be written as bounded existen-
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tial (Σb
1-) formulas) are exactly those in DLogTime-

uniform TC0. In this paper, we consider an extension
C0

2 [div] that results from C0
2 by adding a function sym-

bol for integer division (which is not known to be in
DLogTime-uniform TC0, but only in P -uniform TC0)
and some quantifier-free axioms that specify its inter-
pretation. We show that the Σb

1-definable functions in
C0

2 [div] are exactly those in the class K. As a corol-
lary, we obtain a new function algebra that is equiv-
alent to K, viz. the function algebra characterization
of DLogTime-uniform TC0 of Clote and Takeuti [6],
extended by integer division as a base function. This
characterization implies a better upper bound on the
complexity of K, viz. K ⊆ uniform NC2.

The main technical work goes into showing that the
Σb

1-definable functions of C0
2 [div] are closed under short

iterated products. This is done by formalizing the re-
duction of iterated multiplication to division of
Beame et al. [1], and involves formalizing some basic
number theory in C0

2 [div] for small numbers, e.g. the
Chinese Remainder Theorem and the structure theo-
rem for the multiplicative groups (Z/qZ)∗ for prime
powers q.

We then study C0
2 [div] with respect to interpolation.

We say that a theory T of Bounded Arithmetic has
feasible ∆b

1-interpolation, if for every pair of formulas
A(~x, ~y) and B(~x, ~z) that are ∆b

1 w.r.t. T , and for which
T ⊢ A(~x, ~y) → B(~x, ~z), there is a Craig-interpolant
C(~x) that — as a predicate of natural numbers — is
computable by polynomial size circuits, i.e., it is in
P/poly.

Somewhat surprisingly, the question whether
bounded arithmetic theories have feasible ∆b

1-
interpolation is related to cryptographic hardness as-
sumptions. Kraj́ıček and Pudlák [11] show that if the
RSA cryptosystem is secure against attacks in P/poly,
then the well-known bounded arithmetic theory S1

2 of
Buss [3] does not have feasible ∆b

1-interpolation. More-
over if S1

2 + Φ has feasible ∆b
1-interpolation, then the



discrete logarithm function is computable in P/poly
[11], and also by Buss [4], the Rabin cryptosystem can
be broken in P/poly. Here Φ is the axiom that ev-
ery natural number satisfying Pratt’s NP definition of
primes [13] is actually irreducible.

We show that C0
2 [div] does not have feasible

∆b
1-interpolation, unless the Diffie-Hellman problem,

whose hardness is a common assumption in cryptog-
raphy, can be solved in P/poly, and hence, by a well-
known reduction [15, 12], factoring integers that are
products of two large primes is possible in P/poly. Our
result improves upon the above in two ways: we replace
S1

2 +Φ by the much weaker theory C0
2 [div], and we also

weaken the cryptyographic hardness assumption.

All the mentioned results, including ours, remain
true if P/poly is replaced by any other complexity class
in the definition of feasible ∆b

1-interpolation as well as
in the hardness assumption. The reason that P/poly is
used, instead of e.g. the more natural P , is the relation
of feasible ∆b

1-interpolation to the notion of feasible
interpolation for propositional proof systems.

A proof system Σ for propositional logic is said
to have feasible interpolation, if for every tautology
A(~p, ~q) → B(~p,~r) there is a Craig-interpolant C(~p)
whose circuit size is bounded by a polynomial in the
size of a shortest proof of A(~p, ~q) → B(~p,~r) in Σ.

By a translation of bounded arithmetic formulas
into propositional logic, the ∆b

1-consequences of some
bounded arithmetic theory T have polynomial size
proofs in an associated proof system ΣT . In this
case, feasible interpolation for ΣT implies feasible ∆b

1-
interpolation for the theory T . In this way, the first
mentioned result of [11] implies that Extended Frege
systems do not enjoy feasible interpolation, unless RSA
is insecure.

This was improved upon by Bonet et al. [2], who
showed that the TC0-Frege system, in which every
line is represented by a constant-depth threshold cir-
cuit, does not have feasible interpolation if the Diffie-
Hellman problem is hard. Our result can be seen as
the uniform version of this result, which was posed as
a problem in [2], and the idea of our proof is taken from
that paper.

The natural candidate for a bounded arithmetic the-
ory corresponding to TC0-Frege proofs is of course C0

2 .
Although the simulation of the ∆b

1-consequences of C0
2

by polynomial size TC0-Frege proofs has never been
worked out in detail, it is straightforward though te-
dious. But the TC0-circuits occurring in the proofs
obtained by the simulation are all DLogTime-uniform,
whereas the proofs of the Diffie-Hellman tautologies in
[2] make essential use of the P -uniform, but probably
not DLogTime-uniform circuits of [1]. Thus it is highly

unlikely that C0
2 itself could prove the arithmetic form

of these tautologies, and thus could be shown not to
enjoy feasible ∆b

1-interpolation by this method.

On the other hand, all the functions used in the
proofs in [2] are in the class K, so our first Main The-
orem shows that the theory C0

2 [div] has just the right
amount of (non-)uniformity to prove the inverse image
under translations of the Diffie-Hellman tautologies.

The structure of the paper is as follows. In Sec-
tion 2, we recall the function algebra characterization
of DLogTime-uniform TC0 due to Clote and Takeuti
[6] and the definition of Constable’s class K. In Sec-
tion 3, we define the theory C0

2 [div] and prove that
its Σb

1-definable functions are the class K, by show-
ing that they are closed under short iterated sums and
products. The upper bound on the complexity of the
functions in K follows as a corollary. In Section 4, we
define the Diffie-Hellman formula, and show that it is
provable in C0

2 [div]. Then we observe that a Craig-
interpolant for this formula solves the Diffie-Hellman
problem, which allows us to conclude that the assump-
tion that this problem is hard implies that C0

2 [div] does
not have feasible ∆b

1-interpolation.

In this extended abstract we give only sketches of the
proofs, the details will be presented in a forthcoming
full version of this paper.

2 Function Algebras

We say that a function f is defined by concatenation
recursion on notation (CRN) from g and h0, h1 if

f(0, ~y) = g(~y)

f(s0(x), ~y) = 2 · f(x, ~y) + h0(x, ~y) for x > 0

f(s1(x), ~y) = 2 · f(x, ~y) + h1(x, ~y)

provided that hi(x, ~y) ≤ 1 for all x, ~y and i = 0, 1.

Let ink (x1, . . . xn) := xk, s0(x) := 2x, s1(x) =
2x + 1, |x| := ⌈log2(x + 1)⌉, x#y := 2|x|·|y| and
Bit(x, i) := ⌊ x

2i ⌋mod 2. The following characteriza-
tion of the number-theoretic functions in DLogTime-
uniform TC0 was given by Clote and Takeuti [6]:

Definition 1. The class T is the smallest class of
functions that contains 0, ink , s0, s1, multiplication ·,
#, |x|, Bit and which is closed under composition and
CRN.

Proposition 1. T = DLogTime-uniform TC0.

Definition 2. The class T [div] is defined exactly as T ,
but with integer division ⌊ ·

·⌋ among the base functions.



A function f(x, ~y) is a weak sum, if it is defined from
g(x, ~y) by

f(x, ~y) =

|x|
∑

i=0

g(i, ~y) ,

and it is a weak product , if it is defined by

f(x, ~y) =

|x|
∏

i=0

g(i, ~y) .

Definition 3. Constable’s class K is the smallest
class of functions that contains 0, ink , s0, s1, +, .−, ·
and division ⌊ ·

·⌋, and is closed under composition and
weak sums and products.

Proposition 2. T [div] ⊆ K.

This follows by the proof in [5] that T ⊆ K, which
shows that the base functions of T are in K and that
K is closed under CRN. We will see below that ac-
tually K = T [div]. Since integer division is known
to be in uniform NC2 by Reif [14], this implies K ⊆
uniform NC2.

3 Bounded Arithmetic

The language of Bounded Arithmetic comprises the
usual signature of arithmetic 0, S, +, .−, ·,≤, together
with function symbols for ⌊ 1

2x⌋, MSP (x, i) := ⌊x/2i⌋,
|x| and #.

A quantifier of the form ∀x≤ t , ∃x≤ t with x not oc-
curring in t is called a bounded quantifier. Furthermore,
the quantifier is called sharply bounded if the bounding
term t is of the form |s| for some term s. A formula
is called (sharply) bounded if all quantifiers in it are
(sharply) bounded.

We denote the class of quantifier-free formulas by
open. The class of sharply bounded formulas is de-
noted Σb

0 or Πb
0. For i ∈ N, Σb

i+1 (resp. Πb
i+1) is the

least class containing Πb
i (resp. Σb

i) and closed under
conjunction, disjunction, sharply bounded quantifica-
tion and bounded existential (resp. universal) quantifi-
cation.

BASIC denotes a set of quantifier-free axioms spec-
ifying the interpretations of the function symbols of the
language, see Buss [3] and Takeuti [16].

For more background concerning Bounded Arith-
metic see Kraj́ıček [10] or [3]. We define some terms
that will be used frequently below:

2|x| := 1#x

mod2(x) := x .− 2 · ⌊
1

2
x⌋

Bit(x, i) := mod2(MSP (x, i))

2min(x,|y|) := MSP (2|y|, |y| .− x)

LSP (x, i) := x .− 2min(i,|x|) · MSP (x, i)

βa(w, i) := MSP (LSP (w, Si · |a|), i · |a|)

so that LSP (x, i) returns the number consisting of the
last i bits of x, and βa(w, x) projects the xth block of
bits of length |a| out of w, which is used for sequence
coding.

The theory C0
2 is axiomatized by the quantifier-free

BASIC axioms, the scheme open-LIND

A(0) ∧ ∀x (A(x) → A(Sx)) → ∀x A(|x|)

for all quantifier-free formulas A(x), and the replace-
ment scheme BBΣb

0

∀x≤|s| ∃y≤ t(x) A(x, y) →

∃w<2(t∗#2s) ∀x≤|s| βt∗(w, x) ≤ t(x)

∧ A(x, βt∗(w, x))

for every Σb
0-formula A(x, y). Here t∗ := tM (|s|) for a

monotone term tM that majorizes t.
We say that a function f(~x) is Σb

1-definable in a
theory T if there is a Σb

1-formula A(~x, y) and a term
t(~x) such that

N |= ∀~x A(~x, f(~x))

T ⊢ ∀~x ∃y≤ t(~x) A(~x, y)

T ⊢ ∀~x, y, z A(~x, y) ∧ A(~x, z) → y = z .

In [9, 8], we showed that the Σb
1-definable functions of

C0
2 are exactly those in DLogTime-uniform TC0.

Definition 4. C0
2 [div] is the theory defined like C0

2 ,
but with an added function symbol ⌊ ·

·⌋ and the following
axioms for it:

⌊
x

0
⌋ = 0

y > 0 → y · ⌊
x

y
⌋ ≤ x < y · ⌊

x

y
⌋ + y

We say that a formula A(x) is ∆b
1 in a theory T , if it

is provably in T equivalent to a Σb
1- and a Πb

1-formula.
For a class of formulas Γ, the bit-comprehension axiom
scheme Γ-COMP is

∃y<2|a| ∀i< |a|
(

Bit(y, i) = 1 ↔ A(i)
)

for every formula A(i) ∈ Γ.

Proposition 3. C0
2 [div] proves ∆b

1-COMP and ∆b
1-

LIND.



The proofs of these schemes in C0
2 [9] apply to

C0
2 [div] as well.

Main Theorem 4. The Σb
1-definable functions in

C0
2 [div] are exactly those in K.

Proof. The base functions of K are all terms in the
language of C0

2 [div], and the closure under composition
is trivial. In Theorems 7 and 17 below, we will show
closure under weak sums and products. Hence every
function in K is Σb

1-definable in C0
2 [div].

On the other hand, the witnessing argument in [8] is
easily modified to show that every Σb

1-definable func-
tion in C0

2 [div] is in T [div], hence in K by Prop. 2.

Corollary 5. K = T [div].

By Reif [14], integer division is in uniform NC2,
and it is well-known that uniform NC2 is closed under
CRN, hence we obtain:

Corollary 6. K ⊆ uniform NC2.

3.1 Weak Sums

Theorem 7. The Σb
1-definable functions of C0

2 [div]
(and those of C0

2) are closed under weak sums.

Let g(x) be Σb
1-defined with bounding term t(x).

W.l.o.g. we assume that t is monotone. Then we have

∣

∣

|x|
∑

i=0

g(i)
∣

∣ ≤ |t(|x|)| + |x| ≤ |(2x + 1)t(|x|)| .

We reduce the weak sum to multiplication by the fol-
lowing trick: For b ≥ |(2x + 1)t(|x|)|, we set

Ag(x, b) :=

|x|
∑

i=0

g(i) · 2ib

B(x, b) :=

|x|
∑

i=0

2ib

These functions are easily definable by ∆b
1-COMP .

Hence we can define AuxSumg(x, b) as

LSP (MSP (Ag(x, b) · B(x, b), |x||b|), |b|)

and finally

|x|
∑

i=0

g(i) := AuxSumg(x, (2x + 1)t(|x|)) .

The following proposition justifies this definition by
showing that the inductive definition of iterated sums
is provable in C0

2 [div].

Proposition 8. C0
2 proves the following equations:

|0|
∑

i=0

g(i) = g(0) (1)

|x|
∑

i=0

g(i) =
(

|⌊ 1

2
x⌋|

∑

i=0

g(i)
)

+ g(|x|) (2)

For the proof we use the following decomposition,
which follows easily from distributivity and the defini-
tions

Ag(x, b) · B(x, b)

= Ag(⌊
1

2
x⌋, b) · B(⌊

1

2
x⌋, b) + Ag(⌊

1

2
x⌋, b) · 2|x||b|

+ B(x, b) · g(|x|) · 2|x||b| .

By induction, it is proved that

LSP (MSP (Ag(⌊
1

2
x⌋, b) · B(⌊

1

2
x⌋, b), |x|), |b|)

= AuxSumg(⌊
1

2
x⌋, b) − g(0)

and then (2) follows by the decomposition above and
the observation that

LSP (MSP (Ag(⌊
1

2
x⌋, b) · 2|x||b|, |x||b|), |b|) = g(0)

LSP (MSP (B(x, b) · g(|x|) · 2|x||b|, |x||b|), |b|) = g(|x|) .

3.2 Exponentiation

We now define exponentiation from division using
a geometric series expansion, as in [1]. Let A(b) :=

22|b|3+2|b|2 and B(b) := 22|b|2 , then we define

E(x, b) :=

⌊

A(b)

B(b) .− x

⌋

exp(i, x, b) := LSP
(

MSP
(

E(x, b), 2|b|2(|b| .− i)
)

, 2|b|2
)

Note that exp(i, x, b) is a term in the language of
C0

2 [div]. The following proposition justifies that we
write xi for exp(i, x, b) if we know i, |x| ≤ |b|.

Proposition 9. C0
2 [div] proves: if |x| ≤ |b|, then

exp(0, x, b) = 1 (3)

exp(i + 1, x, b) = exp(i, x, b) · x for i < |b| . (4)

The proof is a formalization of the usual proof of
the basic property of geometric series, we derive the
following equation

E(x, b) = MSP (x · E(x, b) + A(b), 2|b|2)



from which the proposition follows by use of the obvi-
ous decomposition

E(x, b) =

|b|
∑

i=0

exp(|b| .− i, x, b)22i|b|2 .

Proposition 10. The following properties of exponen-
tiation are proved using LIND on j and Prop. 9.

|x| ≤ |b| ∧ i + j ≤ |b| → xi · xj = xi+j (5)

|xy| ≤ |b| ∧ j ≤ |b| → (x · y)j = xj · yj (6)

|xi| ≤ |b| ∧ i · j ≤ |b| → (xi)j = xi·j (7)

3.3 Weak Products

In order to show that the Σb
1-definable functions of

C0
2 [div] are closed under weak products, we will for-

malize the reduction of iterated multiplication to
division of [1] in C0

2 [div].
First, we show that C0

2 [div] can determine the struc-
ture of the multiplicative groups (Z/qZ)∗ for small
prime powers q:

Lemma 11. C0
2 [div] proves: if q ≤ |b| is a prime

power, then

• (Z/qZ)∗ is cyclic for q odd or q = 2, 4, and

• (Z/qZ)∗ is generated by −1 and 5, for q ≥ 8 a
power of 2.

Lemma 11 is used to define, for every function g(x)
and small prime power q, a function P r̃odg(x, q) that

is equal to
∏|x|

i=0 g(i)mod q, provided that p ∤ g(i) for
every i ≤ |x|. This is done by weak summation of the
indices of the values g(i)mod q w.r.t. a generator of
(Z/qZ)∗, which is possible by Lemma 11. The follow-
ing lemma is proved using the properties of weak sums
and exponentiation, and shows that the definition is
correct.

Lemma 12. C0
2 [div] proves

p ∤ g(0) → P r̃odg(0, q) ≡ g(0) (mod q)

and

∀i≤|x| p ∤ g(i)

→ P r̃odg(x, q) ≡ P r̃odg(⌊
1

2
x⌋, q) · g(|x|) (mod q)

Now for the general case, we define

e(i) := µe< |q| pe+1 ∤ g(i)

g′(i) :=

⌊

g(i)

pe(i)

⌋

ē(x) :=

|x|
∑

i=0

e(i)

Prodg(x, q) := pē(x) · P r̃odg′(x, q)

then the following lemma is easily proved by PIND on
x, using Lemma 8, (5) and Lemma 12.

Lemma 13. C0
2 [div] proves

Prodg(0, q) ≡ g(0) (mod q)

Prodg(x, q) ≡ Prodg(⌊
1

2
x⌋, q) · g(|x|) (mod q)

Finally, the binomial theorem is used to define bi-
nomial coefficients from exponentiation.

(

m

k

)

:= LSP (MSP ((2|b| + 1)m, k|b|), |b|)

They provably satisfy the basic properties of binomial
coefficients.

Lemma 14. C0
2 [div] proves the following properties of

binomial coefficients for m, k < |b|:

(

m

0

)

=

(

m

m

)

= 1 (8)

(

m

k

)

=

(

m − 1

k

)

+

(

m − 1

k − 1

)

for 1 ≤ k < m (9)

(

m

k

)

=

(

m

m − k

)

(10)

k

(

m

k

)

= m

(

m − 1

k − 1

)

(11)

Proof. The recursive equations (8) and (9) are proved
by induction using the decomposition

(2|b| + 1)m = 2|b|(2|b| + 1)m−1 + (2|b| + 1)m−1

and the observation

LSP (MSP (2|b| · (2|b| + 1)m−1, k|b|), |b|)

= LSP (MSP ((2|b| + 1)m−1, (k − 1)|b|), |b|) .

Note that the binomial coefficient
(

m

k

)

is only defined
for m and k small. Therefore we can prove (10) and
(11) by induction from (8) and (9).

We need the following further lemma about binomial
coefficients:

Lemma 15. C0
2 [div] proves: If q is a prime power di-

viding
(

2n

n

)

, then q ≤ 2n.



This is proved by induction, using (10) and (11) from
Lemma 14.

Lemma 16. C0
2 [div] proves the Chinese Remainder

Theorem for small prime power moduli.

The usual proof can be formalized directly. Now we
are ready to prove the main theorem of this section.

Theorem 17. The Σb
1-definable functions of C0

2 [div]
are closed under weak products.

We sketch the main steps of the definition: By

Lemma 15, the binomial coefficients M(n) :=
(

2n2

n2

)

provably in C0
2 [div] form a good modulus sequence in

the sense of [1]: all the prime powers in the factoriza-
tion of M(n) are small, but M(n) is sufficiently large
s.t. for all values |x| ≤ n and functions g with |g(i)| ≤ n

for all i ≤ |x|, we have
∏|x|

i=0 g(i) ≤ M(n).
We show that C0

2 [div] can determine the factoriza-
tion of M(n) into prime powers, by using the bound
from Lemma 15 and BBΣb

0. Finally we use Lemma 16

to compute the product
∏|x|

i=0 g(i) by chinese remain-
dering from the values Prodg(x, q), for the prime pow-
ers q in the factorization of M(n). The value ob-

tained is congruent to
∏|x|

i=0 g(i) modulo M(n), and
since M(n) is sufficiently large, it is the actual prod-
uct.

The so defined product provably in C0
2 [div] satisfies

the inductive definition of an iterated product.

Proposition 18. C0
2 [div] proves the following equa-

tions:

|0|
∏

i=0

g(i) = g(0) (12)

|x|
∏

i=0

g(i) =
(

|⌊ 1

2
x⌋|

∏

i=0

g(i)
)

· g(|x|) (13)

This follows from Lemma 13 and the congruence
property of the chinese remainder construction.

Proposition 19. The following properties of weak
products are proved using PIND on x and Prop. 18.

|x|
∏

i=0

g(i) · h(i) =

|x|
∏

i=0

g(i) ·

|x|
∏

i=0

h(i) (14)

|y|
∏

j=0

|x|
∏

i=0

g(i, j) =

|x|
∏

i=0

|y|
∏

j=0

g(i, j) (15)

(

|x|
∏

i=0

g(i)
)k

=

|x|
∏

i=0

g(i)k (16)

4 Interpolation and the Diffie-Hellman

Problem

The Diffie-Hellman problem is the following number-
theoretic problem: given a large integer q and an ele-
ment g ∈ (Z/qZ)∗ of large order, compute gab mod q
from inputs ga mod q and gb mod q. The hardness of
this problem is a common assumption in public-key
cryptography and is the basis for the security of the
Diffie-Hellman key exchange protocol.

Obviously, the Diffie-Hellman problem is at most as
hard as the discrete logarithm problem: given ga mod q,
compute a. It is also known that for integers q = p1p2,
where p1, p2 are prime, the Diffie-Hellman problem is
at least as hard as factoring q [15, 12].

The formula DH(u, v, q, G, X, Y, k) is given as the
conjunction of modulo formulas expressing the follow-
ing properties, where we write n for |q|:

• G codes a sequence 〈g0, . . . , g2n−1〉 of length 2n.
Let g := g0.

• ∀i < 2n − 1 gi+1 = g2
i mod q, which means gi =

g2i

mod q.

• X codes a sequence 〈x0, . . . , xn−1〉 of length n,
and ∀i<n − 1 xi+1 = x2

i mod q.

• Likewise, Y codes a sequence 〈y0, . . . , yn−1〉 of
length n, and ∀i<n − 1 yi+1 = y2

i mod q.

• x0 = gu mod q is expressed by

x0 =
∏

i<n

g
Bit(u,i)
i mod q .

• Similarly, y0 = gv mod q is given by

y0 =
∏

i<n

g
Bit(v,i)
i mod q .

• Finally , Bit(guv mod q, k) = 1 is expressed as

Bit
(

∏

j<n

∏

i<n

g
Bit(u,i)·Bit(v,j)
i+j mod q, k

)

= 1 .

By Thm. 17, the formula DH(u, v, q, G, X, Y, k) is ∆b
1

in C0
2 [div].

Theorem 20. C0
2 [div] proves the implication

DH(a, b, q, G, X, Y, k) → DH(c, d, q, G, X, Y, k)



Proof. It obviously suffices to show that C0
2 [div] can

prove the congruence
∏

i,j<n

g
Bit(a,i)·Bit(b,j)
i+j ≡

∏

i,j<n

g
Bit(c,i)·Bit(d,j)
i+j mod q .

(17)

First, by induction on i, we can prove

∀j<n zj ≡
∏

i<n

g
Bit(w,i)
i+j mod q (18)

where either z stands for x and w stands for a and c,
or z stands for y and w stands for b and d. Then (17)
follows by the following chain of congruences:

∏

j<n

∏

i<n

g
Bit(a,i)·Bit(b,j)
i+j

≡
∏

j<n

(

∏

i<n

g
Bit(a,i)
i+j

)Bit(b,j)

by (7,16)

≡
∏

j<n

x
Bit(b,j)
j by (18) for x,a

≡
∏

j<n

(

∏

i<n

g
Bit(c,i)
i+j

)Bit(b,j)

by (18) for x,c

≡
∏

j<n

∏

i<n

g
Bit(c,i)·Bit(b,j)
i+j by (7,16)

≡
∏

i<n

(

∏

j<n

g
Bit(b,i)
i+j

)Bit(c,j)

by (15,7,16)

≡
∏

i<n

y
Bit(c,i)
i by (18) for y,b

≡
∏

i<n

(

∏

j<n

g
Bit(d,j)
i+j

)Bit(c,i)

by (18) for y,d

≡
∏

j<n

∏

i<n

g
Bit(c,i)·Bit(d,j)
i+j (mod q) by (15,7,16).

Main Theorem 21. If C0
2 [div] has feasible ∆b

1-
interpolation, then the Diffie-Hellman problem is solv-
able in P/poly.

Proof. Using an interpolant C(q, G, X, Y, k) of the ∆b
1-

theorem of Thm. 20, gab mod q can be computed from
g, q, ga mod q and gb mod q as follows:

First compute the sequences G = 〈g2i

mod q〉i<2n,

X = 〈ga2i

mod q〉i<n and Y = 〈gb2i

mod q〉i<n by re-
peated squaring. Then for every k < n, the kth
bit of gab mod q is 1 if and only if C(q, G, X, Y, k)
is true, by the properties of an interpolant. Thus
n parallel copies of C(q, G, X, Y, k) for 0 ≤ k < n
form a circuit computing gab mod q, which is of size
n · ‖C(q, G, X, Y, k)‖ + nO(1).
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