
On Proofs About Threshold Circuits and

Counting Hierarchies (Extended Abstract)

Jan Johannsen

�

Chris Pollett

Department of Mathematics Department of Computer Science

University of California, San Diego Boston University

La Jolla, CA 91093-0112 Boston, MA 02215

Abstract

We de�ne theories of Bounded Arithmetic charac-

terizing classes of functions computable by constant-

depth threshold circuits of polynomial and quasipoly-

nomial size. Then we de�ne certain second-order the-

ories and show that they characterize the functions in

the Counting Hierarchy. Finally we show that the for-

mer theories are isomorphic to the latter via the so-

called RSUV -isomorphism.

1 Introduction

A phenomenon that is commonly observed in Com-

plexity Theory is that proofs of results about counting

complexity classes (#P , Mod

p

P etc.) can often be

scaled down to yield results about small depth cir-

cuit classes with the corresponding counting gates.

For example, Toda's result [17] that every problem in

the Polynomial Hierarchy can be solved in polynomial

time with an oracle for #P corresponds to Allender's

theorem [1] that polynomial size constant-depth cir-

cuits with unbounded fan-in AND and OR gates can

be simulated by quasi-polynomial size depth 3 thresh-

old circuits.

We give a logical explanation for this phenomenon

and turn the observation into a theorem by de�n-

ing bounded arithmetic theories corresponding to the

Counting Hierarchy FCH (which is the union of #P ,

#P

#P

, #P

#P

#P

: : : and can be viewed as the largest

counting class) on the one hand and constant-depth

threshold circuits (TC

0

-circuits) of quasi-polynomial

size on the other hand, and showing that they are iso-

morphic.

The paper is organized as follows: First

we give characterizations of the classes of func-

tions computable by constant-depth threshold cir-

cuits of polynomial and quasi-polynomial size,

and more generally of size exp(exp((log logn)

O(1)

)),

�

Supported by DFG grant No. Jo 291/1-1

exp(exp(exp((log log logn)

O(1)

))) : : : , by function al-

gebras. In order to do that, we give a new proof of

Clote and Takeuti's [9] function algebra characteriza-

tion of the functions computed by polynomial size TC

0

circuits. Unlike the original proof, ours can be gener-

alized to the case of quasi-polynomial and the above

larger size bounds.

We then de�ne a hierarchy of bounded arithmetic

theories C

0

k

for k � 2, and show that these theories

characterize the above classes of threshold circuits.

More precisely, the functions whose graphs are de�ned

by bounded existential formulas and that are provably

total in the theories C

0

2

and C

0

3

are precisely those

in computable by polynomial size and quasipolyno-

mial size TC

0

-circuits, and analogous relations hold

between the theories C

0

k

for k > 3 and the larger size

threshold circuit classes mentioned above. This sim-

pli�es and generalizes earlier work by the �rst author

[10].

Next we de�ne another hierarchy of second-order

bounded arithmetic theories D

0

k

for k � 1. Using the

function algebra characterization of the counting hi-

erarchy FCH by Vollmer and Wagner [18], we then

show that the theory D

0

2

characterizes FCH : The

functions provably total in D

0

2

whose graphs are de�n-

able by second-order existential bounded formulas are

exactly the functions in FCH . Similarly, the theories

D

0

k

with k > 2 correspond to classes de�ned analogous

to FCH , but using machines with quasi-polynomial

(for k = 3) and longer running times. The witnessing

argument that we use to prove these results is simpler

than the second-order witnessing of Buss [3] and could

also be applied to give simpler proofs of earlier results

concerning second-order bounded arithmetic.

Finally we show that for every k � 1, the theories

C

0

k+1

and D

0

k

are isomorphic via the so-called RSUV -

isomorphism [14, 16]. The idea behind this isomor-

phism is that a number a can be viewed as the set

f i ; the ith bit in a is 1 g, and vice versa a �nite set A

can be viewed as representing the number

P

a2A

2

a

.

This way, the numbers in a second-order theory corre-

spond to the small numbers in a �rst-order theory, i.e.

those in the range of the logarithm function, whereas

the sets in a second-order theory correspond to all

numbers in a �rst-order theory.

Technically, this means that there are translations

mapping a �rst-order formula A to a second-order for-

mula A

H

, and a second-order formula B to a �rst-

order formula B

L

such that D

0

k

proves A

H

for every

theorem A of C

0

k+1

, and C

0

k+1

proves B

L

for every

theorem B of D

0

k

. These statements are proved by

induction on the lengths of proofs, so that a proof in

one of the theories can be translated step by step into

a proof in the other theory. Moreover A and A

HL

are

provably equivalent in C

0

k+1

, and for a bounded for-

mula B, B and B

LH

are provably equivalent in D

0

k

,

so the translations indeed form a kind of isomorphism

between theories.

2 Function Algebras

We de�ne a hierarchy of growth rates by �

1

(n) :=

O(n), and then inductively �

k+1

(n) := 2

�

k

(logn)

. In

particular, �

2

(n) are the polynomial and �

3

(n) are the

quasi-polynomial growth functions.

Let TC

0

(f(n)) denote the set of functions com-

putable by Dlogtime-uniform families of threshold cir-

cuits of constant depth and size O(f(n)), and let TC

0

abbreviate TC

0

(�

2

(n)) = TC

0

(n

O(1)

) and qTC

0

=

TC

0

(�

3

(n)). Thus TC

0

has its usual meaning, and

qTC

0

denotes the class of functions computed by

quasi-polynomial size TC

0

circuits.

The model of a Threshold Turing Machines (TTM)

was introduced by Parberry and Schnitger [13]. A

TTM is similar to an alternating machine, but instead

of existential and universal states it has deterministic

and threshold states, and it has a distinguished read-

only guess tape. The successor con�gurations of a con-

�guration in a threshold state all have the same state,

but the initial segment of the guess tape through the

position of the head is �lled with zeroes and ones in

all possible ways. Hence if the head on the guess tape

is over the mth cell, there are 2

m

successor con�gura-

tions. The con�guration is accepting if the majority of

its successors are. A TTM also has a read-only input

tape with random access via an index tape to allow for

sub-linear runtimes. In the following, all TTMs are

required to perform only constantly many threshold

operations on each computation path. The following

was noted by Allender [2]:

Proposition 1. The class of languages accepted in

time O(t(n)) on a TTM coincides with TC

0

(2

O(t(n))

),

for every complexity function t(n) =
(log n).

Thus TC

0

(�

k

(n)) is equal to �

k�1

(logn) time on

a TTM , and in particular, TC

0

is equal to O(log n)

time on a TTM , and polylogarithmic time on a TTM

is the same as qTC

0

.

The scheme of concatenation recursion on notation

(CRN) was introduced by Clote [7]. We say that a

function f is de�ned by CRN from g and h

0

; h

1

if

f(~x; 0) = g(~x)

f(~x; s

0

(y)) = 2 � f(~x; y) + h

0

(~x; y) for y > 0

f(~x; s

1

(y)) = 2 � f(~x; y) + h

1

(~x; y)

provided that h

i

(~x; y) � 1 for all ~x; y and i = 0; 1.

Let s

0

(x) := 2x, s

1

(x) := 2x + 1, jxj :=

dlog

2

(x+ 1)e, Bit(x; i) := bx=2

i

c mod 2, and for

j � n let �

n

j

(x

1

; : : : ; x

n

) := x

j

. Furthermore let

x#

2

y := 2

jxj�jyj

, and for k � 2 let x#

k+1

y := 2

jxj#

k

jyj

.

For k � 2, let T

k

denote the least class of functions

that contains the set

f0; s

0

; s

1

; j:j; Bit; �;#

2

; : : : ;#

k

g [f�

n

j

; j � ng

and is closed under composition and CRN . Clote and

Takeuti [9] showed that T

2

= TC

0

. We generalize this

to:

Theorem 2. T

k

= TC

0

(�

k

(n)) for every k � 2. In

particular, T

2

= TC

0

and T

3

= qTC

0

.

Proof. For the inclusion T

k

� TC

0

(�

k

(n)) the proof

in [9] for the case k = 2 can be used to show that

TC

0

(�

k

(n)) is closed under CRN . Then it is easy to

see that the function #

k

can be computed by circuits

of the required size.

For the reverse inclusion, it is shown how to

code the computation of a TTM operating in time

�

k�1

(logn) by a function in T

k

. This is done analo-

gous to Clote's proof in [8] that the algebra A

0

, which

is T

2

without multiplication, is equal to the alternat-

ing logarithmic time hierarchy. The idea is to code

sequences of instructions instead of con�gurations and

to use the closure of T

k

under sharply bounded ma-

jority quanti�ers. The details will be presented in the

full version of the paper.

3 First-Order Theories

For k � 1, the language L

k

comprises the usual

signature of arithmetic 0; S;+;

:

; �;� plus function

symbols for b

1

2

xc, jxj, MSP (x; i) := bx=2

i

c and, if

k � 2, the functions #

2

; : : : ;#

k

.

A quanti�er of the form 8x� t , 9x� t with x not

occurring in t is called a bounded quanti�er. Further-

more, the quanti�er is called sharply bounded if the

bounding term t is of the form jsj for some term s. A

formula is called (sharply) bounded if all quanti�ers

in it are (sharply) bounded.

We denote the class of quanti�er-free formulas in

L

k

by open

k

. The class of sharply bounded for-

mulas in L

k

is denoted �

b

0;k

or �

b

0;k

. For i 2 N,

�

b

i+1;k

(resp. �

b

i+1;k

) is the least class containing �

b

i;k

(resp. �

b

i;k

) and closed under conjunction, disjunction,

sharply bounded quanti�cation and bounded existen-

tial (resp. universal) quanti�cation. We usually omit

the index k from the names of these classes, the value

of k will always be clear from the context.

BASIC

k

denotes a set of quanti�er-free axioms

specifying the interpretations of the function symbols

of L

k

. It can most conveniently be taken as the set

BASIC from [3] together with the axioms for MSP

and

:

from [16] and the two axioms

jx#

j

yj = S(jxj#

j�1

jyj)

z < x#

j

y ! jzj < jx#

j

yj

for 3 � j � k.

For a class of formulas �, the axiom schema �-

LIND is

A(0) ^ 8x (A(x) ! A(Sx))! 8x A(jxj)

for each A(x) 2 �. By �-IND we denote the usual

induction scheme for formulas in �.

The theory S

i

k

is the theory in the language L

k

ax-

iomatized by the BASIC

k

axioms and the �

b

i

-LIND

scheme, and T

i

k

is the theory given by BASIC

k

and

�

b

i

-IND. The results from [3, 4, 12, 11, 5] show a

close connection between the theories S

i

2

and T

i

2

and

polynomial time computations.

Before we can introduce the theories we are going

to consider, we have to de�ne some frequently used

terms. Let

2

jxj

:= 1#

2

x

mod2(x) := x

:

2 � b

1

2

xc

Bit(x; i) := mod2(MSP (x; i))

2

min(x;jyj)

:=MSP (2

jyj

; jyj

:

x)

LSP (x; i) := x

:

2

min(i;jxj)

�MSP (x; i)

�

a

(w; i) :=MSP (LSP (w; Si � jaj); i � jaj)

so that LSP (x; jyj) returns the number consisting

of the last jyj bits of x, and if w codes a sequence

hb

1

; : : : ; b

`

i with jb

i

j � jaj for all i, then �

a

(w; i) = b

i

.

Thus the code for such a sequence is simply the num-

ber w whose binary representation consists of a 1 fol-

lowed by the binary representations of the b

i

concate-

nated, each padded with zeroes to be of exact length

jaj. The replacement scheme BB� is then

8x�jsj 9y� t(x) A(x; y)!

9w<2(t

�

#

2

2s) 8x�jsj �

t

�

(w; x) � t(x)

^A(x; �

t

�

(w; x))

for each A(x; y) 2 �, where t

�

:= t

M

(jsj) for some

monotone term t

M

that, provably in BASIC

k

+

open-LIND, surpasses t. The comprehension scheme

�-COMP is

9y<2

jaj

8x< jaj (Bit(y; x) = 1 $ A(x))

for each A(x) 2 �.

The theory C

0

k

is the theory in the language

L

k

given by BASIC

k

, the open-LIND scheme and

BB�

b

0

. The following proposition is easily proved:

Proposition 3. C

0

k

proves the �

b

0

-COMP axioms

and the �

b

0

-LIND axioms.

For a class of formulas �, a function f is said to be

�-de�nable in a theory T if there is a formulaA(~x; y) 2

�, describing the graph of f in the standard model,

and a term t(~x), such that T proves

8~x 9!y� t(~x)A(~x; y) :

In [10], the theory

�

R

0

2

was de�ned as S

0

2

plus �

b

0

-

COMP and BB�

b

0

, and it was shown that the �

b

1

-

de�nable functions of

�

R

0

2

are precisely the functions

in TC

0

. By Prop. 3, the theory C

0

2

is equal to

�

R

0

2

,

and thus the �

b

1

-de�nable functions of C

0

2

are also the

functions in TC

0

. This can be generalized as follows:

Theorem 4. The �

b

1

-de�nable functions of C

0

k

are

exactly the functions in TC

0

(�

k

(n)).

Proof. Using Proposition 3, we can do the same proof

as in [10], showing that the �

b

1

-de�nable functions of

C

0

k

are the function algebra T

k

, hence the result follows

from Theorem 2 above.

In particular, the �

b

1

-de�nable functions of C

0

3

are the

functions in qTC

0

.

4 Counting Hierarchies

The counting hierarchy is the following hierarchy of

functions: At the �rst level one has 1#P := #P , the

class of those functions computable as the number of

accepting paths of an NP machine. The higher levels

are de�ned inductively by (i + 1)#P = #P

i#P

. The

counting hierarchy is FCH =

S

i�1

i#P . We de�ne

FCH(f(n)) similarly to FCH except rather than us-

ing NP machines we use O(f(n)) time bounded non-

deterministic machines. Another characterization of

FCH(f(n)) is those functions computed by a TTM

with runtime bounded by O(f(n)). If 	 is a set of

functions then FCH() = [

f2	

FCH(f(n)).

De�nition: Let 	 be a set of unary functions. A

	-sum is a sum of the form

f(jxj)

X

z=0

g(x; z)

where f is in 	. We write Exp for the set f2

n

k

; k 2

Ng.

Let FCA() denote the smallest class of functions

that contains the arithmetic operations 0, 1, +,

:

and � and the projection functions �

n

j

, and is closed

under composition and 	-sums.

Corollary 4.4 in Vollmer and Wagner [18] shows

that FCA(Exp) = FCH . Their proof generalizes in

a straightforward manner to show:

Theorem 5. Let 	 be a set of complexity functions

of at least polynomial growth. Then

FCH() = FCA(2

	

)

where 2

	

:= f2

f

; f 2 	g.

We de�ne the class FCA

~�

() in the same way as

FCA() except now we also let the predicate variables

~� viewed as 0-1-valued functions be initial functions in

the algebra. We de�ne CA

~�

() to be the 0-1 valued

functions in FCA

~�

().

Lemma 6. Suppose A(z; ~x; ~�) is a predicate in

CA

~�

(2

�

k

(n)

). Then

f(y; ~x; ~�) = �z�y A(z; ~x; ~�)

is in FCA

~�

(2

�

k

(n)

).

5 Second-Order Theories

Let L

k

be the language L

k

extended to allow

second-order unary predicate variables �

t

i

for i 2 N

and L

k

-term t. The idea is t is a bound on the range

of true values of this variable. A second-order for-

mula is called bounded if all its �rst-order quanti�ers

are bounded. We usually omit the index i and use

other lower case Greek letters as names for predicate

variables instead.

�

1;b

0;k

= �

1;b

0;k

is the class of formulas with only

bounded �rst-order quanti�ers. Then for every i, the

class �

1;b

i+1;k

(�

1;b

i+1;k

) is the least class that contains

�

1;b

i;k

(resp. �

1;b

i;k

) and is closed under conjunction, dis-

junction, bounded �rst-order quanti�cation and ex-

istential (resp. universal) second-order quanti�cation.

A formula B is a �

1;b

i;k

in a theory T if B is provably

in T equivalent to both a �

1;b

i;k

and a �

1;b

i;k

-formula.

We will use the following boundedness axioms for

predicate variables in our theories:

8x (�

t

(x) ! x < t) :

We write fxgV

t

for the abstract fxg(x � t ^ V). Let

h ; i be a pairing function with inverses ()

1

and ()

2

,

and let bd(s; t) be a term that bounds all pairs of the

form hi; ji where i � t and j � s. Let ��(b; �) be the

abstract for the second-order � function fxg�(hb; xi),

and let S� be the abstract fxg

�

�(x) $ 9y�x:�(y)

�

.

Then the counting axiom is given by

9'

bd(t;jtj)

8j�jtj (��(0; ')(j) $ j = 0 ^ �

t

(0))

^ 8i<t

��

:�

t

(Si) ^ ��(Si; ') �

jtj

��(i; ')

�

_

�

�

t

(Si) ^ ��(Si; ') �

jtj

S��(i; ')

��

where �

1

�

t

�

2

:= 8j� t �

1

(j) $ �

2

(j).

De�nition:

1. �-BCA, �-bounded comprehension axiom is the

following scheme:

9�

t

8x� t (�(x) $ A(x))

where A is in � and does not contain the variable

�.

2. �-BCR, �-bounded comprehension rule is the

following inference:

�) A(V

t

);�

�) 9'

t

A('

t

);�

where V is a �-abstract.

3. �-AC, �-second-order replacement is the follow-

ing scheme

8x�s 9�

t

B(x; �)

$ 9

u

8x�s B(x; ��(x;

u

))

where A is in � and u := bd(s; t).

4. �-ACR, �-second-order replacement rule is the

following inference

�) 8x�s 9'

t

A(x; '

t

);�

�) 9

u

8x�s A(x; ��(x;

u

));�

where A is in � and u := bd(s; t).

The theories D

0

k

over the language L

k

are axiom-

atized as BASIC

k

together with counting axioms,

open-IND, open-BCA and �

1;b

0

-AC. We could have

alternatively characterized this theory as those state-

ments provable in the second-order sequent calculus

with BASIC

k

axioms, counting axioms, open-IND,

�

1;b

0

-ACR, and open-BCR.

Theorem 7. D

0

k

proves the following extensionality

axioms, where u � max(s; t):

8x�u (�

s

(x) $

t

(x))! 8x (�

s

(x) $

t

(x)) :

This follows immediately from the boundedness ax-

iom. Using an abstract to code a pair of predicates

into a single predicate, one can show the following:

Theorem 8. D

0

k

proves �

1;b

1

-AC.

Similar to Proposition 3, we have

Lemma 9. D

0

k

proves �

1;b

1

-BCA and �

1;b

1

-IND.

Proof. Let A(x) be �

1;b

1

in D

0

k

, and consider the

formula A(x) $ �

0

(0), which is equivalent in D

0

k

to a �

1;b

1

-formula B(x; �

0

). Now D

0

k

proves 8x �

t 9�

0

B(x; �

0

), hence by �

1;b

1

-AC there is a predicate

bd(t;0)

such that 8x� t��(x;)(0) $ A(x), and hence

by open-BCA there is '

t

such that 8x � t '

t

(x) $

A(x), which proves �

1;b

1

-BCA. Now �

1;b

1

-IND fol-

lows immediately from �

1;b

1

-BCA and open-IND.

Using �

1;b

1

-BCA, it is possible to show:

Theorem 10. D

0

k

can �

1;b

1

-de�ne the functions in

FCA

~�

(2

�

k

(n)

). Moreover, D

0

k

can �

1;b

1

-de�ne any

f 2 FCA(2

�

k

(n)

) using a formula not containing free

predicate variables.

Proof. The only nontrivial thing to prove is the closure

of the �

1;b

1

-de�nable functions under summation. So

let g(x) be �

1;b

1

-de�nable in D

0

k

, and let s be a term

bounding g. Now y < g(x) is �

1;b

1

in D

0

k

, so by �

1;b

1

-

BCA we can de�ne a predicate �

bd(s;t)

with

8x; y� t �(hy; xi) $ y < g(x) :

Now note that the number of x � bd(s; t) with �(x) is

P

t

i=0

g(i), and this number can be counted by use of

the counting axiom.

This implies also that every predicate in CA

~�

(2

�

k

(n)

)

is �

1;b

1

in D

0

k

.

6 A Witnessing Argument

The following closure properties of �

1;b

1

formulas in

D

0

k

are easily veri�ed.

Lemma 11. The class of �

1;b

1

-formulas in D

0

k

is

closed under boolean combinations, bounded �rst-order

quanti�cation, substitution of �

1;b

1

-abstracts for free

predicate variables and substitution of terms contain-

ing �

1;b

1

-de�ned functions for free �rst-order variables.

Let

~

�

1;b

1

be the class consisting of formulas of the

form 9x� t9'A or of the form 8x� t9'A where A is

�

1;b

0

. Suppose D

0

k

de�nes some function f by proving

8x 9y 9' A where A is in �

1;b

0

. Then by Parikh's

Theorem, D

0

k

proves) 9y � t 9' A and given the

form of D

0

k

's axioms and rules of inference, by cut-

elimination we can assume all sequents in this proof

contain only

~

�

1;b

1

-formulas. We de�ne a witnessing

predicate for

~

�

1;b

1

-formulas as follows:

1. If A(~a; ~�) 2 �

1;b

0

then Wit2

A

(
;~a; ~�) := A(~a; ~�).

2. If A(~a; ~�) is of the form 9'

t

B where B 2 �

1;b

0

,

then

Wit2

A

(

t

;~a; ~�) := B(

t

;~a; ~�):

3. If A(~a; ~�) is of the form 9x� s 9'

t

B where B 2

�

1;b

0

, then

Wit2

A

(

t

;~a; ~�) := 9x�s B(

t

; x;~a; ~�)

4. If A(~a; ~�) is of the form 8x� s 9'

t

B where B 2

�

1;b

0

, then Wit2

A

(

bd(s;t)

;~a; ~�) is

8x�s B(��(x + 1;

bd(s;t)

); x;~a; ~�) :

Lemma 12. Let A(~a; ~�) be a

~

�

1;b

1

-formula. Then D

0

k

proves

A(~a; ~�) $ 9

t

Wit2

A

(

t

;~a; ~�)

The statement is trivial if A falls under the �rst

three cases listed above. For the fourth case it follows

by �

1;b

1

-AC.

Lemma 13. Any �

1;b

0

-formula with free variables

among

t

; ~� is in CA

t

;~�

(2

�

k

(n)

). In particular, for

a

~

�

1;b

1

-formula A(~a; ~�), Wit2

A

(

t

;~a; ~�) is a predicate

in CA

t

;~�

(2

�

k

(n)

).

For a cedent of

~

�

1;b

1

-formulas � = A

1

; : : : ; A

n

we

de�ne Wit2

^�

(

t

�

;~a; ~�) to be

^

i

Wit2

A

i

(��(i;

t

�

);~a; ~�) ;

where t

�

:= bd(n;max(t

1

; :::; t

n

)) and t

i

is the bound

on the witnessing predicate for A

i

. Likewise, we de�ne

Wit2

_�

(

t

�

;~a; ~�) to be

_

i

Wit2

A

i

(��(i;

t

�

);~a; ~�) :

Theorem 14. Suppose D

0

k

` �) � where �

and � are cedents of

~

�

1;b

1

-formulas having free vari-

ables among ~c;~
. Then there is a predicate M

t

0

in

CA

�

t

�

;~

(2

�

k

(n)

) which is �

1;b

1

in D

0

k

such that:

D

0

k

`Wit2

^�

(�

t

�

;~c;~
)!

Wit2

_�

(fxgM

t

�

(x;~c; �

t

�

; ~
);~c;~
):

Proof. We can assume that any D

0

k

proof of a sequent

of

~

�

1;b

1

-formulas contains only

~

�

1;b

1

-formulas. Also, we

can assume that no predicate variable on the right

hand side of a sequent in the proof is eliminated by

an second-order existential introduction or open-BCR

inference, because otherwise we could replace it ev-

erywhere by the abstract fxg(1 = 1) and add some

weakenings to make the resulting �gure a valid proof.

The proof proceeds by induction on a D

0

k

sequent

calculus proof of �) �. The induction base is trivial

for the logical, BASIC and boundedness axioms since

these consist of �

1;b

0

-formulas. For the counting axiom,

note that the predicate C

bd(t;jtj)

(x; �

t

) de�ned by

Bit

�

(x)

1

X

j=0

�

t

(j) ; (x)

2

�

= 1

is in CA

�

t

(2

�

k

(n)

) and hence �

1;b

1

in D

0

k

, and that

C

bd(t;jtj)

(x; �

t

) witnesses the counting axiom. For the

induction step, we only treat the cases where the last

inference is a right bounded-universal introduction,

open-BCR, open-IND or �

1;b

0

-ACR. For sake of read-

ability we also do not display the free variables ~c;~
.

Suppose the last inference is

b � t;�) A(b);�

�) 8x� t A(x);�

:

By the hypothesis there is a �

1;b

1

-abstract M

t

A;�

1

in

CA

�

r

(2

�

k

(n)

) such that

D

0

k

`Wit2

b�t ^ �

(�

r

; b)

!Wit2

A _�

(fxgM

t

A;�

1

(x; b; �

r

); b) ;

where r is t

b�t;�

. Now either A is in �

1;b

0

, or A is

of the form 9' B where B is �

1;b

0

. In both cases

let ~�

r

:= fxg�

r

�

h(x)

1

:

1; (x)

2

i

�

, and let g(x) =

�y � t :Wit2

A

(��(1; fxgM

1

(x; y; ~�

r

)); y), which is in

FCA

�

r

(2

�

k

(n)

) by Lemma 6. In the �rst case, we de-

�ne

M

s

(x; �

r

) :=M

1

(x; g(x); ~�

r

)

where s = t

(8x�t)A(x;~c);�

. If g(x) < t+1 this abstract

will provide a witness to �. Otherwise, notice that

8x� t A is a true �

1;b

0

-formula so any �

1;b

1

-abstract in

CA

�

r

;~

(2

�

k

(n)

) witnesses the succedent. So

D

0

k

`Wit2

^ �

(�

r

)

!Wit2

8x�tA_�

(fxgM

s

(x; �

r

)) :

In the second case, A is of the form (9')B where

B 2 �

1;b

0

. Let m be the number of formulas in the

lower succedent. We de�ne M

s

(x; �

r

) where s is as

before to be

((x)

1

= 1 ^M

1

(h1; ((x)

2

)

2

i; ((x)

2

)

1

; ~�

r

;))

_ (2 � (x)

1

� m ^M

1

(x; g(x); ~�

r

)))

Now either 8x� t A(x) holds or there is some b � t

that :A(b). In the �rst case, the ��(1;M

s

) witnesses

8x� t A(x). Otherwise � is witnessed by the rest of

M

s

. So

D

0

k

`Wit2

^ �

(�

r

)

!Wit2

8x�tA_�

(fxgM

s

(x; �

r

)):

Suppose the �nal inference is an open-BCR

�) A(V

t

);�

�) (9'

t

)A(');�

where V

t

is an open-abstract. By hypothesis there is

a �

1;b

1

-abstract M

t

A;�

1

2 CA

�

r

(2

�

k

(n)) such that

D

0

k

`Wit2

^�

(�

r

)

! Wit2

A _�

(fxgM

t

A;�

1

(x; �

r

));

where r is t

�

. Let M

s

(x; �

r

) be

((x)

1

= 1 ^ V

t

((x)

2

) _ ((x)

1

> 1 ^M

t

A;�

1

(x; �

r

))

where s := bd(m + 1;max(t; t

A;�

). It is now easy to

see that

D

0

k

`Wit2

^�

(�

r

)

!Wit2

(9')A_�

(fxgM

s

(x; �

r

)):

Suppose the �nal inference is an open-IND:

A(y);�) A(Sy);�

A(0);�) A(t);�

By induction there is a �

1;b

1

-predicate M

s

1

2

CA

�

r

(2

�

k

(n)

) such that

D

0

k

`Wit2

A(y) ^ �

(�

r

; y)

!Wit2

A(Sy)_�

(fxgM

s

1

(x; y; �

r

); y);

where r = t

A(y);�

and s = t

A(Sy);�

. Since A(y)

is open, we can de�ne a function g(x; �

r

) = �y <

t :A(Sy), so that g 2 FCA

�

r

(2

�

k

(n)

) by Lemma 6.

Now de�ne M to be

M

s

:=M

s

1

(x; g(x; �

r

); �

r

):

By �

1;b

0

-IND either A(t) holds or :A(0) holds or g

returns a value such that A(y) and :A(Sy). In the

�rst two cases, M

s

trivially witnesses the succedent.

In the last case, by the induction hypothesis M

s

will

produce a witness for some formula in �.

For the case where the �nal inference is

�

1;b

0

-ACR, note that Wit2

9 8x<t A(x;��(x;))

and

Wit2

8x<t 9'A(x;')

are the same predicate, so any ab-

stract witnessing the upper sequent will also witness

the lower sequent.

From the witnessing theorem we get the following

result immediately.

Theorem 15. Suppose A(~x; y) is a �

1;b

1

-formula

where ~x; y are all the free variables of A such that

D

0

k

` 8~x 9y A(~x; y). Then there is a �

1;b

1

-formula

B(~x; y), a term t and a function f 2 FCA(2

�

k

(n)

) so

that

1. D

0

k

` 8~x 8y B(~x; y)! A(~x; y)

2. D

0

k

` 8~x 9!y� t B(~x; y)

3. For all ~n, N j= B(~n; f(~n))

In particular, this implies that any �

1;b

1;k

-de�nable

function of D

0

k

is in FCA(2

�

k

(n)

). Together with The-

orem 10, this gives the characterization of the �

1;b

1;k

-

de�nable functions in D

0

k

.

7 RSUV -isomorphism

First we de�ne a translation mapping every L

k+1

-

formula A to a L

k

-formula A

H

. The translation is

essentially the same as the one de�ned in [15, 16].

Inductively, we de�ne for each L

k+1

-term t a �

1;b

1

-

formula A

t

(x) and a L

k

-term T

t

. Then t

H

is the ab-

stract fxg(x � T

t

^A

t

(x)). The idea is that the value

of t is

P

T

t

i=0

A

t

(i)2

i

, i.e. A

t

codes t in binary.

First, T

0

:= 0 and A

0

is 0 = 1. For a variable a,

T

a

:= a and A

a

is a second-order variable �

a

. Then

for each function symbol f , T

f(

�

t)

and A

f(

�

t)

are de�ned

according to the computation of the bits of f(

�

t) from

the bits of

�

t. E.g. T

b

1

2

tc

:= T

t

:

1 and A

b

1

2

tc

(x) :=

A

t

(x+ 1), and T

St

:= T

t

+ 1 and

A

St

(x) := A

t

(x) $ 9y�x :A

t

(y) :

The most intriguing case is multiplication. First let

2

y

�(x) be x � y ^ �(x

:

y), and let (� +

H

�) be an

abstract such that A

s+t

(x) is (s

H

+

H

t

H

)(x). Now we

de�ne T

s�t

:= T

s

+ T

t

, and A

s�t

as

9

m

Table(s

H

; t

H

;

m

; T

s

) ^ ��(T

s

+ 1;

m

)(x)

where m := bd(T

s

+ 1; T

s�t

) and the formula

Table(s

H

; t

H

;
; a) is de�ned as

8y�T

s�t

:��(0;
)(y) ^

8y�a

�

�

:s

H

(y) ^ ��(Sy;
) �

T

s�t

��(y;
)

�

_

�

s

H

(y) ^ ��(Sy;
) �

T

s�t

(��(y;
) +

H

2

y

t

H

)

�

�

i.e.
 codes the computation of s � t as the sum of the

vector of numbers t � Bit(s; i) � 2

i

for i < jsj.

To see that A

s�t

is �

1;b

1

we need to prove in D

0

k

that

given s

H

, t

H

and a � T

s

+1, there is a unique predicate

bd(a+1;T

s�t

)

such that Table(s

H

; t

H

;
; a) holds. Then

the �

1;b

1

-formula A

s�t

is equivalent to the �

1;b

1

-formula

8

m

Table(s

H

; t

H

;

m

; T

s

)! ��(T

s

+ 1;

m

)(x):

Now the existence of
 is proved from the counting ax-

iom by formalizing in D

0

k

a reduction of vector sum-

mation to counting such as the one in [6], and the

uniqueness follows from extensionality.

The de�nitions for the other function symbols can

be found in [15, 16]. To de�ne A

H

for a formula A,

�rst (s � t)

H

is de�ned as s

H

�

H

t

H

, where � H ex-

presses the lexicographic ordering of predicates. Then

(s = t)

H

is (s � t)

H

^ (t � s)

H

. The translation

commutes with the propositional connectives. For

quanti�ed formulas note that B(a)

H

is of the form

B

H

(a; �

a

). Now (9x� t B(x))

H

is

9x�T

t

9'

x

�

x

H

�

H

t

H

^B

H

(x; '

x

)

�

and (8x� t B(x))

H

is

8x�T

t

8'

x

�

x

H

�

H

t

H

! B

H

(x; '

x

)

�

;

where A

x

is '

x

. Finally de�ne (9x B(x))

H

as

9x9'

x

B

H

(x; '

x

) and (8xB(x))

H

as 8x8'

x

B

H

(x; '

x

).

Theorem 16. If C

0

k+1

` A, then D

0

k

` A

H

, for every

L

k+1

-formula A.

Proof. By induction on the length of a proof of A in

C

0

k+1

. The translations of BASIC axioms can all be

proved in D

0

k

by use of �

1;b

1

-IND, where for those

axioms concerning multiplication the counting axiom

has to be applied. The translation of open-LIND are

proved by �

1;b

1

-IND, and the translation of BB�

b

0

is

proved by use of �

1;b

1

-AC.

Next we de�ne a translation mapping a L

k

-formula

B to a L

k+1

-formula B

L

. The translation is the same

used in [16].

For a term t, t

L

is constructed by replacing every

variable a in t by jaj. Then (s = t)

L

is s

L

= t

L

and

(s � t)

L

is s

L

� t

L

. For A = �

t

(s), A

L

is de�ned as

s

L

� t

L

^ Bit(a; s

L

) = 1. The translation commutes

with the propositional connectives. For the quanti-

�ers, we have three cases:

� If A is 8x B or 9x B, then A

L

is simply 8x B

L

resp. 9x B

L

.

� If A is 8'

t

B('

t

) or 9'

t

B('

t

), then A

L

is 8x<

2

t

L

+1

B

L

(x) resp. 9x<2

t

L

+1

B

L

(x).

� If A is 8x � t B or 9x � t B, and B

L

is

~

B(jxj),

then A

L

is 8x� t

L

~

B(x) resp. 9x� t

L

~

B(x).

Note that due to the presence of the function #

k+1

every term of the form t

L

for L

k

-term t can be written

in the form jsj for some L

k+1

-term s. Hence the bound

2

t

L

+1

can be expressed by a term, and the translations

of �rst-order bounded quanti�ers are sharply bounded,

which gives the following crucial property of the trans-

lation.

Lemma 17. If B is a �

1;b

i;k

-formula, then A

L

is equiv-

alent to a �

b

i;k+1

-formula in C

0

k+1

.

Theorem 18. If D

0

k

` B, then C

0

k+1

` B

L

, for every

L

k

-formula B.

Proof. By induction on the length of a proof of B

in D

0

k

. Note that BASIC axioms are translated to

instances of BASIC axioms and the translation of

the boundedness axiom is tautological. Applications

of open-IND and open-BCA are provable by open-

LIND and open-COMP respectively, where the lat-

ter is provable in C

0

k+1

by Lemma 3. The translation

of �

1;b

0

-AC is provable by use of BB�

b

0

. Finally the

translation of the counting axiom can be proved in

C

0

k+1

by use of the reduction of counting to multipli-

cation in [6].

Finally, we show that the translations

H

and

L

are

inverse to each other. There are very easy translations

�

from L

k+1

to itself and

2

from L

k

to itself such that

the following holds.

Theorem 19. 1. C

0

k+1

` A $ A

HL�

for every

L

k+1

-formula A.

2. D

0

k

` B $ B

LH2

, for every bounded L

k

-formula

B.

Proof. For both statements, one direction follows by

applying Theorems 16 and 18 in succession. The other

direction is by induction on the complexity of A or B.

The proof is the same as in [16].

This together with Theorems 16 and 18 immediately

yields the following.

Corollary 20. 1. For every L

k+1

-formula A,

C

0

k+1

` A i� D

0

k

` A

H

.

2. For every bounded L

k

-formula B, D

0

k

` B i�

C

0

k+1

` B

L

.

Acknowledgments

We would like to thank the following people: Jan

Kraj���cek and an anonymous referee for the paper [10]

suggested that

�

R

2

0

= C

0

2

might be RSUV -isomorphic

to a certain subtheory of D

0

1

, which was the starting

point of this paper. Peter Clote brought [18] to our

attention, and Eric Allender referred us to the concept

of Threshold Turing Machines and his [2].

References

[1] E. Allender. A note on the power of threshold

circuits. In Proceedings of the 30th FOCS, pages

580{584, 1989.

[2] E. Allender. The permanent requires large uni-

form threshold circuits. Manuscript. Preliminary

Version appeared in COCOON'96, 1996.

[3] S. R. Buss. Bounded Arithmetic. Bibliopolis,

Napoli, 1986.

[4] S. R. Buss. Axiomatizations and conservation re-

sults for fragments of bounded arithmetic. In

Logic and Computation, volume 106 of Con-

temporary Mathematics, pages 57{84. American

Mathematical Society, Providence, 1990.

[5] S. R. Buss and J. Kraj���cek. An application of

boolean complexity to separation problems in

bounded arithmetic. Proceedings of the Lon-

don Mathematical Society | 3rd Series, 69:1{21,

1994.

[6] A. C. Chandra, L. Stockmeyer, and U. Vishkin.

Constant depth reducibility. SIAM Journal of

Computing, 13:423{439, 1984.

[7] P. Clote. Sequential, machine independent char-

acterizations of the parallel complexity classes

ALogTIME; AC

k

; NC

k

and NC. In S. R. Buss

and P. J. Scott, editors, Feasible Mathematics,

pages 49{69. Birkh�auser, Boston, 1990.

[8] P. Clote. Computation models and function al-

gebras. to appear in E. Gri�or (ed.) Handbook of

Recursion Theory, 1996.

[9] P. Clote and G. Takeuti. First order bounded

arithmetic and small boolean circuit complexity

classes. In P. Clote and J. Remmel, editors, Fea-

sible Mathematics II, pages 154{218. Birkh�auser,

Boston, 1995.

[10] J. Johannsen. A bounded arithmetic theory for

constant depth threshold circuits. In P. H�ajek, ed-

itor, G

�

ODEL `96, pages 224{234, 1996. Springer

Lecture Notes in Logic 6.

[11] J. Kraj���cek. Fragments of bounded arithmetic

and bounded query classes. Transactions of the

AMS, 338:587{598, 1993.

[12] J. Kraj���cek, P. Pudl�ak, and G. Takeuti. Bounded

arithmetic and the polynomial hierarchy. Annals

of Pure and Applied Logic, 52:143{153, 1991.

[13] I. Parberry and G. Schnitger. Parallel computa-

tion with threshold functions. Journal of Com-

puter and System Sciences, 36:278{302, 1988.

[14] A. A. Razborov. An equivalence between sec-

ond order bounded domain bounded arithmetic

and �rst order bounded arithmetic. In P. Clote

and J. Kraj���cek, editors, Arithmetic, Proof The-

ory and Computational Complexity, volume 23 of

Oxford Logic Guides, pages 247{277. Clarendon

Press, Oxford, 1993.

[15] G. Takeuti. S

i

3

and

�

V

i

2

(BD). Archive for Math-

ematical Logic, 29:149{169, 1990.

[16] G. Takeuti. RSUV isomorphisms. In P. Clote

and J. Kraj���cek, editors, Arithmetic, Proof The-

ory and Computational Complexity, volume 23 of

Oxford Logic Guides, pages 364{386. Clarendon

Press, Oxford, 1993.

[17] S. Toda. On the computational power of PP and

�P . In Proceedings of the 30th FOCS, pages 26{

35, 1989.

[18] H. Vollmer and K. Wagner. Recursion theo-

retic characterizations of complexity classes of

counting functions. Theoretical Computer Sci-

ence, 163:245{258, 1996.

