
Lower Bounds for Width-Restricted Clause Learning on Formulas of Small Width

Eli Ben-Sasson
Technion – Israel Institute of Technology

Haifa, Israel
eli@cs.technion.ac.il

Jan Johannsen
LMU München

Munich, Germany
jan.johannsen@ifi.lmu.de

Abstract
Clause learning is a technique used by back-
tracking-based propositional satisfiability solvers,
where some clauses obtained by analysis of con-
flicts are added to the formula during backtracking.
It has been observed empirically that clause learn-
ing does not significantly improve the performance
of a solver when restricted to learning clauses of
small width only. This experience is supported
by lower bound theorems. It is shown that lower
bounds on the runtime of width-restricted clause
learning follow from lower bounds on the width of
resolution proofs. This yields the first lower bounds
on width-restricted clause learning for formulas in
3-CNF.

1 Introduction
In the past decades, a considerable amount of research has
been devoted to the satisfiability problem for classical propo-
sitional logic (SAT). Besides its central role in computational
complexity theory, programs for this problem, so-called SAT
solvers, are of increasing importance for practical applica-
tions in various domains.

Most contemporary SAT solvers are based on extensions
of the backtracking procedure known as the DLL algorithm
[Davis et al., 1962]. Commonly used extensions to the basic
DLL algorithm described below include non-chronological
backtracking [Bayardo Jr. and Schrag, 1997], clause learning
[Marques-Silva and Sakallah, 1996] and restarts [Gomes et
al., 1997].

The basic recursive DLL procedure is called for a formula
F in conjunctive normal form and a partial assignment α
(which is empty in the initial call from outside). If α sat-
isfies F , then α is returned, and if α causes a conflict, i.e.,
falsifies a clause in F , then the call fails. Otherwise a vari-
able x that occurs in F dα, the formula remaining after α is
applied to F , is selected according to some heuristic, and the
procedure is called recursively twice, once with α extended
by x := 1 and once with α extended by x := 0. If one of

The work of the first author was supported by the European
Community’s Seventh Framework Programme (FP7/2007-2013)
unter grant agreement number 240258.

the recursive calls returns a satisfying assignment, then this
assignment is returned, otherwise – if both recursive calls fail
– the call fails.

An important ingredient in implementations of the DLL al-
gorithm is unit propagation. Abstractly, it can be seen as just
a variable selection heuristic: if there is a variable x that oc-
curs in a unit clause in F dα, i.e., a clause containing just one
unevaluated literal, then this variable x is selected. Since one
of the two recursive calls then leads to a conflict immediately,
the assignment α can instead be extended directly by setting
x so that the literal in the unit clause is satisfied. This is it-
erated until no unit clauses remain, thereby closing α under
implications. Note that conflicts are always detected during
unit propagation, since immediately before being falsified a
clause will be a unit clause.

One of the most successful extensions of the DLL al-
gorithm is clause learning [Marques-Silva and Sakallah,
1996]: when the procedure encounters a conflict, then a sub-
assignment α′ of α is computed that suffices to cause this
conflict, i.e., such that the closure of α′ under unit propaga-
tion already falsifies F . This sub-assignment α′ can then be
stored in form of a new clause C added to the formula, viz.
the unique largest clause C falsified by α′. This way, when in
a later branch of the search another partial assignment extend-
ing α′ occurs, the procedure can backtrack earlier since then
the added clause C becomes falsified and causes a conflict.

When clause learning is implemented, a heuristic, the
learning strategy, is needed to decide which learnable clauses
to keep in memory, because learning a large number of
clauses leads to excessive consumption of memory, which
slows the solver down rather than helping it. Many early
learning strategies were such that the width, i.e., the num-
ber of literals, of learnable clauses was restricted, so that the
solver learned only clauses whose width does not exceed a
certain threshold.

Experience has shown that such learning strategies are not
very helpful, i.e., learning only narrow clauses does not sig-
nificantly improve the performance of a DLL algorithm for
hard formulas. The present paper continues a line of work
that aims at supporting this experience with rigorous mathe-
matical analyses in the form of lower bound theorems.

The first lower bound for width-restricted clause learning
was shown [Buss et al., 2008] for the well-known pigeon-
hole principle clauses PHPn. These formulas require time

2Ω(n logn) to solve when learning clauses of width up to n/2
only, whereas they can be solved in time 2O(n) when learning
arbitrary clauses. While this example in principle shows that
learning wide clauses can yield a speed-up, it is not fully sat-
isfactory, since even with arbitrary learning, the time required
is exponential in n.

Another lower bound was shown [Johannsen, 2009] for a
a set of clauses Ordn based on the ordering principle, which
states that every partial ordering on n elements has a maximal
element. These formulas can be solved in polynomial time
when learning arbitrary clauses, but require exponential time
to solve when learning clauses of size up to n/4 only.

Both lower bounds are asymptotically the same as the
known lower bounds [Iwama and Miyazaki, 1999; Bonet and
Galesi, 2001] on the time required for solving the respective
formulas by DLL algorithms without clause learning.

In these previous lower bounds, the hard example formulas
PHPn and Ordn themselves contain clauses of large width.
Since it is conceivable that the necessity to learn wide clauses
is merely due to the presence of these wide initial clauses, the
question arose whether similar lower bounds can be shown
for formulas of small width. We answer this question by prov-
ing lower bounds on width-restricted clause learning for small
width formulas.

The lower bounds are shown by proving the same lower
bounds on the size of refutations in a certain resolution based
propositional proof system RTL (see Section 2). The re-
lationship of this proof system to the DLL algorithm with
clause learning has been established in several earlier works
[Buss et al., 2008; Hertel et al., 2008]. We will show that for
formulas of small width, lower bounds for this proof system
follow from lower bounds on the width of resolution proofs.
This also gives an easier proof of a slightly weaker form of
the previous lower bound [Johannsen, 2009] for the formulas
Ordn.

Using known constructions [Bonet and Galesi, 2001;
Segerlind et al., 2004] of families of unsatisfiable 3-CNF for-
mulas that have resolution refutations of polynomial size, but
which require resolution refutations of large width, we obtain
a number of results which show that width-restricted clause
learning algorithms will require exponentially longer running
time than clause learning algorithms with unrestricted width,
for certain hard formulas having small width.

The lower bound for clause learning algorithms on for-
mulas requiring large resolution width is somewhat dual to
a result of Atserias et al. [2009], who give a small polyno-
mial upper bound on the runtime of a clause learning algo-
rithm with restarts on formulas having resolution refutations
of small width.

We will now briefly describe the idea for our lower bound
proof. In the proof of the lower bound for the pigeonhole
principle formulas PHPn [Buss et al., 2008], it was shown
that it takes a long time to derive clauses that are small enough
to be learned. This is not the case for the clauses Ordn,
from which small clauses can be derived very quickly. In
the lower bound proof for these formulas [Johannsen, 2009],
the clauses were semantically classified into useful and use-
less clauses, and it was shown that on the one hand, learning
useless clauses does not reduce the running time significantly,

and on the other hand it takes a long time to derive sufficiently
small useful clauses.

In this work, the main idea for the lower bound proof is
similar to that for the clauses Ordn. The classification of
clauses into useful and useless clauses in this general case
is obtained from a combinatorial characterization of formulas
requiring resolution refutations of large width, due to Atserias
and Dalmau [2008].

2 Preliminaries
A literal a is a variable a = x or a negated variable a = x̄. A
clause C is a disjunction C = a1 ∨ . . . ∨ ak of literals ai. The
width of C is k, the number of literals in C.

A formula in conjunctive normal form (CNF) is a conjunc-
tion F = C1∧ . . .∧Cm of clauses, it is usually identified with
the set of clauses

{
C1, . . . , Cm

}
. A formula F in CNF is in

k-CNF if every clause C in F is of width w(C) ≤ k.
We consider resolution-based refutation systems for for-

mulas in CNF, which are known to be strongly related to
DLL algorithms. These proof systems have two inference
rules: the weakening rule, which allows to conclude a clause
D from any clause C with C ⊆ D, and the resolution rule,
which allows to infer the clause C ∨D from the two clauses
C ∨ x and D ∨ x̄, provided that the variable x does not occur
in either C or D, pictorially:

C ∨ x D ∨ x̄

C ∨D

We say that the variable x is eliminated in this inference.
A resolution derivation of a clause C from a CNF-formula

F is a directed acyclic graph (dag) with a unique sink, in
which every node has in-degree at most 2, where every node
v is labeled with a clause Cv such that:

1. The sink is labeled with C.

2. If a node v has one predecessor u, then Cv follows from
Cu by the weakening rule.

3. If a node v has two predecessors u1, u2, then Cv follows
from Cu1

and Cu2
by the resolution rule.

4. A source node ν is labeled by a clause C in F .

A resolution refutation of F is a resolution derivation of the
empty clause from F . Resolution is sound and complete: a
CNF-formula F has a resolution refutation if and only if it is
unsatisfiable.

We call a derivation tree-like if the underlying unlabeled
dag is a tree, otherwise we may call it dag-like for emphasis.
As usual, for a dag that is a tree we refer to the sink as the
root, to the predecessors of a node as its children and to a
source node as a leaf.

The size of a resolution derivation is the number of nodes in
the dag. The width of a resolution refutationR is the maximal
width of a clause occurring in R. The resolution width of F
is the minimal width of a resolution refutation of F .

Ben-Sasson and Wigderson [2001] have shown the follow-
ing relation between resolution width and size of tree-like res-
olution:

Theorem 1. If a d-CNF formula F requires resolution width
at least w, then every tree-like resolution refutation of F is of
size at least 2w−d.

In the literature, resolution proof systems are sometimes
defined without the weakening rule, but since applications of
this rule can be eliminated from a tree-like resolution refu-
tation without increasing the size or width, all lower bounds
shown for tree-like resolution without weakening apply to the
system with weakening as well.

LetX be a set of variables. A restriction ρ ofX is a partial
assignmentX → {0, 1}. A restriction ρ is extended to literals
by setting

ρ(x̄) :=

{
1 if ρ(x) = 0

0 if ρ(x) = 1

For a clause C in variables X , we define

Cdρ :=

1 if ρ(a) = 1 for some a ∈ C∨
a∈C, ρ(a)6=0

a otherwise,

where the empty disjunction is identified with the constant 0.
For a CNF-formula F over X , we define

F dρ :=

0 if Cdρ = 0 for some C ∈ F∧
C∈F,Cdρ 6=1

Cdρ otherwise,

where the empty conjunction is identified with 1.
Proposition 2. Let R be a (tree-like) resolution derivation of
C from F of size s, and ρ a restriction. Then there is a (tree-
like) resolution derivationR′ of Cdρ from F dρ of size at most
s.

In particular, if Cdρ = 0 then R′ is a resolution refutation
of F dρ. As usual, we denote the derivation R′ by Rdρ.

A resolution derivation is called regular if on every path
through the dag, no variable is eliminated twice. This condi-
tion is inessential for tree-like resolution since minimal tree-
like refutations are always regular [Tseitin, 1968], but regular
dag-like refutations can necessarily be exponentially longer
than general ones [Alekhnovich et al., 2007].

Tree-like resolution exactly corresponds to the DLL al-
gorithm by the following well-known correspondence: the
search tree produced by the run of a DLL algorithm on an un-
satisfiable formula F forms a tree-like resolution refutation
of F , and from a given tree-like regular resolution refutation
of F one can construct a run of a DLL algorithm showing the
unsatisfiability of F that produces essentially the given search
tree.

In order to define proof systems that correspond to the DLL
algorithm with clause learning in the same way, we define
resolution trees with lemmas (RTL). In these proof systems,
the order of branches in the proof tree is significant, thus the
underlying trees need to be ordered.

An ordered binary tree is a rooted tree in which every node
has at most 2 children, and where every node with 2 children
has a distinguished left and right child. The post-ordering ≺
of an ordered binary tree is the order in which the nodes of the
tree are visited by a post-order traversal, i.e., u ≺ v holds for

nodes u, v if u is a descendant of v, or if there is a common
ancestor w of u and v such that u is a descendant of the left
child of w and v is a descendant of the right child of w.

An RTL-derivation of a clause C from a CNF-formula F
is an ordered binary tree, in which every node v is labeled
with a clause Cv such that:

1. The root is labeled with C.

2. If a node v has one child u, then Cv follows from Cu by
the weakening rule.

3. If a node v has two children u1, u2, thenCv follows from
Cu1

and Cu2
by the resolution rule.

4. A leaf v is labeled by a clause D in F , or by a clause C
labeling some node u ≺ v. In the latter case we call C a
lemma.

An RTL-derivation is an RTL(k)-derivation if every lemma
C is of width w(C) ≤ k. An RTL-refutation of F is an
RTL-derivation of the empty clause from F .

A subsystem WRTI of RTL was defined by Buss et
al. [2008], which exactly corresponds to a general formu-
lation of the DLL algorithm with clause learning: the size
of a refutation of an unsatisfiable formula F in WRTI has
been shown [Buss et al., 2008] to be polynomially related to
the runtime of a schematic algorithm DLL-L-UP on F . This
schema DLL-L-UP subsumes most clause learning strategies
commonly used in practice, including first-UIP [Marques-
Silva and Sakallah, 1996], all-UIP, decision [Zhang et al.,
2001] and rel-sat [Bayardo Jr. and Schrag, 1997]. A vari-
ant of DLL-L-UP which incorporates these learning strategies
and also allows for non-chronological backtracking [Bayardo
Jr. and Schrag, 1997] was described by Hoffmann [2007] and
shown to be likewise simulated by WRTI.

It follows from the mentioned results of Buss et al. [2008]
that if an unsatisfiable formula F can be solved by a DLL
algorithm with clause learning in time t, then it has an RTL-
refutation of size polynomial in t. Moreover, if the algorithm
learns only clauses of width at most k, then the refutation
is in RTL(k). In this work we prove lower bounds on the
size of RTL(k)-refutations, which thus yield lower bounds on
the runtime of DLL algorithms with width-restricted clause-
learning.

In addition to clause learning, most state-of-the-art satisfi-
ability solvers also use restarts [Gomes et al., 1997], where
the search is periodically discarded and started from scratch,
retaining only the learned clauses. The performance of such
solvers is thus not modelled by RTL. The runtime of a DLL
algorithm with clause learning and restarts was shown to be
polynomially related to the size of general dag-like resolution
refutations, for certain particular learning strategies [Beame
et al., 2004] and more recently also for most natural learn-
ing strategies [Pipatsrisawat and Darwiche, 2009]. However,
these simulations of general dag-like resolution proofs, as
well as the clause learning algorithm of Atserias et al. [2009]
that simulates resolution proofs of small width, use a partic-
ular restart policy: they perform a restart after every conflict.
An interesting question is whether general resolution proofs
can be simulated with more natural restart policies.

3 Resolution Width and Systems of
Restrictions

Let X be a set of variables, and w ∈ N with w ≤ |X|. A
w-system of restrictions over X is a non-empty set H of re-
strictions with the following properties:
• |ρ| ≤ w for all ρ ∈ H,
• downward closure: if ρ ∈ H and ρ′ ⊆ ρ, then ρ′ ∈ H,
• the extension property: if ρ ∈ H with |ρ| < w, and
x ∈ X \ dom ρ, then there is ρ′ ∈ H with ρ′ ⊇ ρ and
x ∈ dom ρ′.

We say thatH avoids a clause C if Cdρ 6= 0 for every ρ ∈ H,
andH avoids a formula F ifH avoids every clause C ∈ F .

The notion was introduced by Atserias and Dalmau [2008],
who showed the following characterization of resolution
width:
Theorem 3. A formula F requires resolution width at leastw
if and only if there is a w-system of restrictions over var(F)
that avoids F .

Atserias and Dalmau [2008] called a w-system of restric-
tions avoiding F a winning strategy for the Duplicator in the
Boolean existential w-pebble game on F , which is explained
by the origin of the notion in the existential k-pebble game
[Kolaitis and Vardi, 1995] in finite model theory. Since we
make no use of the model-theoretic background, we chose to
use a shorter name for the concept.

For our application we shall use the concept of a system of
restrictions being restricted by one of its elements, which we
define now.
Lemma 4. If H is a w-system of restrictions over X , and
ρ ∈ H with |ρ| = r < w, then the set

Hdρ :=
{
σ ; domσ ⊆ X \ dom ρ and σ ∪ ρ ∈ H

and |σ| ≤ w − r
}

is a (w − r)-system of restrictions over X \ dom ρ.
Note that Hdρ would be empty, and hence not a system of

restrictions in the sense of the definition, if the definition were
extended to restrictions ρ /∈ H: if there is a σ ∈ Hdρ, then by
definition σ ∪ ρ ∈ H, and by downward closure ρ ∈ H.

Proof. Every σ ∈ Hdρ has |σ| ≤ w − r by definition. If
σ ∈ Hdρ and σ′ ⊆ σ, then σ′ ∪ ρ ⊆ σ ∪ ρ, and thus by
downward closure of H we have σ′ ∪ ρ ∈ H. Therefore
σ′ ∈ Hdρ, henceHdρ is downward closed.

If σ ∈ Hdρ is a restriction with |σ| < w − r and x ∈
X \ dom ρ is a variable with x /∈ domσ, then |σ ∪ ρ| < w,
and hence by the extension property ofH there is σ′ ⊇ σ ∪ ρ
in H with x ∈ domσ′. Then σ′ \ ρ ⊇ σ is in Hdρ, and x ∈
dom(σ′ \ ρ). Therefore Hdρ has the extension property, and
hence is a (w−r)-system of restrictions overX \dom ρ.

Lemma 5. If H is a w-system of restrictions that avoids F ,
and ρ ∈ H, thenHdρ avoids F dρ.

Proof. Assume that Hdρ does not avoid F dρ, i.e., there is a
clause C in F dρ and a restriction σ ∈ Hdρ such that Cdσ =
0. Since C is in F dρ, there is a clause D with Ddρ = 0

such that C ∨ D ∈ F . By definition, σ′ = σ ∪ ρ ∈ H and
(C ∨D)dσ′ = Cdσ ∨ Ddρ = 0, hence H does not avoid F ,
in contradiction to the hypothesis.

4 The Lower Bound
We now prove our main theorem, which shows that lower
bounds for RTL(k)-refutations of F follow from lower
bounds on the resolution width of F , for formulas F of suffi-
ciently small width.
Theorem 6. If F is a d-CNF that requires resolution width
at least w to refute, then for any k, every RTL(k)-refutation
of F is of size at least

2w−(k+max{d,k}) ≥ 2w−(2k+d).

Proof. Let R be an RTL(k)-refutation of F . Since F re-
quires resolution width w, by Theorem 3, there is a w-system
of restrictionsH that avoids F .

Let C be the first clause in R that is of small enough width
w(C) ≤ k to be used as a lemma, and that is not avoided
by H. In particular, every lemma in R derived before C is
avoided by H. Let ρ be the smallest restriction in H with
Cdρ = 0, so that we have r := |ρ| = w(C) ≤ k.

Let RC be the subtree of R below C, so that RC is an
RTL(k)-derivation of C from F . Let G be the set of lemmas
used in RC , thus RC is a tree-like resolution derivation of C
fromF∧G, and thereforeR′ := RCdρ is a tree-like resolution
refutation of F ′ := (F ∧G)dρ. Note that every clause in F
is of width d, and every clause in G is of width k, therefore
w(F ′) ≤ w(F ∧G) ≤ max{d, k}.

By the choice of C we know thatH avoids every clause in
G, and henceH avoids F ∧G. It follows by Lemmas 4 and 5
thatHdρ is a (w − r)-system of restrictions that avoids F ′.

Therefore, by Theorem 3, F ′ requires resolution width
w − r ≥ w − k, and thus by Theorem 1, the refutation
RCdρ, and therefore R, is of size at least 2(w−k)−w(F ′) ≥
2w−(k+max{d,k}) as claimed.

5 Applications
We now instantiate our general lower bound to prove several
lower bounds for RTL(k)-refutations of certain concrete for-
mulas.

Ordering Principle
The ordering principle expresses the fact that every finite lin-
ear ordering has a maximal element. Its negation is expressed
in propositional logic by the following set of clauses Ordn
over the variables xi,j for 1 ≤ i, j ≤ n with i 6= j:

x̄i,j ∨ x̄j,i for 1 ≤ i < j ≤ n (Ai,j)

xi,j ∨ xj,i for 1 ≤ i < j ≤ n (Ti,j)

x̄i,j ∨ x̄j,k ∨ x̄k,i
for 1 ≤ i, j, k ≤ n
pairwise distinct (∆i,j,k)∨

1≤j≤n, j 6=i

xi,j for 1 ≤ i ≤ n (Mi)

The clauses Ai,j , Ti,j and ∆i,j,k state that in a satisfying as-
signment, the values of the variables define a linear ordering

on n points. The clauseMi expresses that i is not a maximum
in this ordering, therefore the formula Ordn is unsatisfiable.

The formulas Ordn were introduced by Krishnamurthy
[1985] as potential hard example formulas for resolution, but
short regular resolution refutations for them were constructed
by Stålmarck [1996].
Proposition 7. There are dag-like regular resolution refuta-
tions of Ordn of size O(n3).

Note that the size of the formula Ordn is Θ(n3), so the size
of these refutations is linear in the size of the formula. A gen-
eral simulation of regular resolution by WRTI [Buss et al.,
2008] yields WRTI-refutations of Ordn of polynomial size.
On the other hand, a lower bound for RTL(k)-refutations of
Ordn was shown by Johannsen [2009]:
Theorem 8. For k < n/4, every RTL(k)-refutation of Ordn
is of size 2Ω(n).

Thus this lower bound shows the necessity to use wide lem-
mas to refute them efficiently. But since the formula Ordn
itself contains wide clauses, it is conceivable that it is these
wide clauses that cause this necessity. We therefore apply our
general lower bound to derive similar lower bounds for vari-
ants of the ordering principle formulas having small width.
The most straightforward way to obtain a formula of small
width from any formula is to expand it into a 3-CNF, as de-
scribed below:

For a CNF-formula F , the 3-CNF-expansion E3(F) of F
is obtained as follows: for every clause C = a1 ∨ . . . ∨ ak in
F of width w(C) = k ≥ 4, introduce k + 1 new extension
variables yC,0, . . . , yC,k, and replace C by the clauses:

yC,0 ȳC,i−1 ∨ ai ∨ yC,i for 1 ≤ i ≤ k ȳC,k

The formula E3(F) is obviously in 3-CNF and is satisfiable
if and only if F is satisfiable.

Bonet and Galesi [2001] show a lower bound of n/6 on
the resolution width of the 3-CNF expansion E3(Ordn) of
the ordering principle. In fact, we can show the following
slightly larger lower bound.
Theorem 9. The formula E3(Ordn) requires resolution
width at least n/2.

By Theorem 6, a lower bound for RTL(k)-refutations of
E3(Ordn) follows from Theorem 9: by choosing k = n/6
and observing that for n ≥ 18 we get k ≥ 3, we obtain from
Theorem 6 a lower bound of 2n/2−2n/6 = 2n/6.
Corollary 10. For n ≥ 18, every RTL(n/6)-refutation of
E3(Ordn) is of size 2n/6.

It follows that a DLL algorithm with clause learning re-
quires exponential time to solve the formulas E3(Ordn)
when only clauses of width n/6 are learned. On the other
hand, from the short regular resolution refutations of Ordn,
short regular refutations of E3(Ordn) are obtained easily.
From those, one can construct a run of a DLL algorithm with
arbitrary clause learning on E3(Ordn) in polynomial time.
Hence we have an example of 3-CNF formulas for which
learning wide clauses is necessary to solve them efficiently.

Since the clauses Mi have tree-like derivations from
E3(Mi) of size n, an RTL(k)-refutation of Ordn of size s

can be converted into an RTL(k)-refutation of E3(Ordn)
of size sn. Hence Corollary 10 also yields an easier proof
of a slightly weaker variant of the lower bound from Theo-
rem 8: every RTL(n/6)-refutation of Ordn is of size at least
2n/6−logn.

Graph Ordering Principle
A different way to obtain a small width formula from the or-
dering principle is to consider the restriction of it to a graph,
as introduced by Segerlind et al. [2004]. The only wide
clauses in Ordn are the clauses Mi stating that there is an
element larger than i, for every i. A formula of small width
can be obtained by defining for every i a small set of elements
and requiring that one element in this set is larger than i.

For a graph G = (V,E) on n vertices V = {1, . . . , n}, the
formula Ord(G) consists of the clauses Ai,j , Ti,j and ∆i,j,k

of Ordn, plus the following restricted version of the clauses
Mi: ∨

j∈N(i)

xi,j for 1 ≤ i ≤ n (M ′i)

Here N(i) denotes the neighborhood of i in G, i.e.., the set
{j ∈ V ; {i, j} ∈ E}. The formula requires that for every
vertex, there is a larger one in the ordering among its neigh-
bors. Thus in this notation, the formula Ordn is Ord(Kn)
for the complete graph Kn on n vertices. If the graph G has
maximum degree d ≥ 3, then Ord(G) is a d-CNF.

A graph G on n vertices is called ε-neighborly, if for all
pairs of disjoint subsets A,B ⊆ V with |A|, |B| ≥ εn there
is an edge {a, b} ∈ E with a ∈ A and b ∈ B. A lower
bound on the resolution width of Ord(G) depending on the
neighborliness of G was shown by Segerlind et al. [2004]:
Theorem 11. If G is a connected graph on n vertices that is
ε-neighborly for 0 < ε < 1/3, then Ord(G) requires resolu-
tion width at least (1−3ε

6)n.
The following lemma follows from known results about

expander graphs that can e.g. be found in the book of Alon
and Spencer [2002, Section 9.2].
Lemma 12. There is a constant d such that for every n, there
is a graph Gn on n vertices that has maximum degree d and
is 1/6-neighborly.

For these graphsGn, the formula Ord(Gn) is a d-CNF that
requires resolution width n/12. By invoking Theorem 6 with
k = n/36 we obtain the following lower bound for n large
enough that k ≥ d:
Corollary 13. For sufficiently large n, every RTL(n/36)-
refutation of Ord(Gn) for the graphs Gn is of size at least
2n/36.

As above, it follows that a DLL algorithm with clause
learning requires exponential time to solve Ord(Gn) when
only clauses of width n/36 are learned. On the other hand,
short regular resolution refutations of Ord(Gn) are contained
in the refutations of Ordn. From those, one can again con-
struct a run of a DLL algorithm with arbitrary clause learn-
ing on Ord(Gn) in polynomial time. Hence the formulas
Ord(Gn) are another example of formulas of constant width
for which learning wide clauses is necessary to solve them
efficiently.

References
[Alekhnovich et al., 2007] Michael Alekhnovich, Jan Jo-

hannsen, Toniann Pitassi, and Alasdair Urquhart. An expo-
nential separation between regular and general resolution.
Theory of Computing, 3:81–102, 2007.

[Alon and Spencer, 2002] N. Alon and J. Spencer. The Prob-
abilistic Method. John Wiley and Sons, 2002.

[Atserias and Dalmau, 2008] Albert Atserias and Victor Dal-
mau. A combinatorial characterization of resolution width.
Journal of Computer and System Sciences, 74:323–334,
2008.

[Atserias et al., 2009] Albert Atserias, Johannes Klaus
Fichte, and Marc Thurley. Clause learning algorithms
with many restarts and bounded-width resolution. In
Oliver Kullmann, editor, Theory and Practice of Satisfia-
bility Testing – SAT 2009, pages 114–127. Springer LNCS
5584, 2009.

[Bayardo Jr. and Schrag, 1997] Roberto J. Bayardo Jr. and
Robert C. Schrag. Using CSP look-back techniques to
solver real-world SAT instances. In Proc. 14th Natl. Con-
ference on Artificial Intelligence, pages 203–208, 1997.

[Beame et al., 2004] Paul Beame, Henry A. Kautz, and
Ashish Sabharwal. Towards understanding and harness-
ing the potential of clause learning. Journal of Artificial
Intelligence Research, 22:319–351, 2004.

[Ben-Sasson and Wigderson, 2001] Eli Ben-Sasson and Avi
Wigderson. Short proofs are narrow — resolution made
simple. Journal of the ACM, 48:149–169, 2001.

[Bonet and Galesi, 2001] Maria Luisa Bonet and Nicola
Galesi. Optimality of size-width tradeoffs for resolution.
Computational Complexity, 10(4):261–276, 2001.

[Buss et al., 2008] Samuel R. Buss, Jan Hoffmann, and Jan
Johannsen. Resolution trees with lemmas: Resolution re-
finements that characterize DLL algorithms with clause
learning. Logical Methods in Computer Science, 4(4),
2008.

[Davis et al., 1962] Martin Davis, George Logemann, and
Donald W. Loveland. A machine program for theorem-
proving. Communications of the ACM, 5(7):394–397,
1962.

[Gomes et al., 1997] Carla P. Gomes, Bart Selman, and
Nuno Crato. Heavy-tailed distributions in combinatorial
search. In Gert Smolka, editor, Principles and Practice of
Constraint Programming - CP97. Springer LNCS 1330,
1997.

[Hertel et al., 2008] Philipp Hertel, Fahiem Bacchus, Toni-
ann Pitassi, and Allen van Gelder. Clause learning can
effectively p-simulate general propositional resolution. In
Dieter Fox and Carla P. Gomes, editors, Proceedings of
the 23rd AAAI Conference on Artificial Intelligence, AAAI
2008, pages 283–290. AAAI Press, 2008.

[Hoffmann, 2007] Jan Hoffmann. Resolution proofs and
DLL-algorithms with clause learning. Diploma Thesis,
LMU München, 2007.

[Iwama and Miyazaki, 1999] Kazuo Iwama and Shuichi
Miyazaki. Tree-like resolution is superpolynomially
slower than dag-like resolution for the pigeonhole princi-
ple. In Proceedings of the 10th International Symposium
on Algorithms and Computation (ISAAC), pages 133–142,
1999.

[Johannsen, 2009] Jan Johannsen. An exponential lower
bound for width-restricted clause learning. In Oliver Kull-
mann, editor, Theory and Practice of Satisfiability Testing
– SAT 2009, pages 128–140. Springer LNCS 5584, 2009.

[Kolaitis and Vardi, 1995] Phokion G. Kolaitis and Moshe Y.
Vardi. On the expressive power of Datalog: Tools and
a case study. Journal of Computer and System Sciences,
51(1):110–134, 1995.

[Krishnamurthy, 1985] Balakrishnan Krishnamurthy. Short
proofs for tricky formulas. Acta Informatica, 22:253–274,
1985.

[Marques-Silva and Sakallah, 1996] João P. Marques-Silva
and Karem A. Sakallah. GRASP - a new search algorithm
for satisfiability. In Proc. IEEE/ACM International Con-
ference on Computer Aided Design (ICCAD), pages 220–
227, 1996.

[Pipatsrisawat and Darwiche, 2009] Knot Pipatsrisawat and
Adnan Darwiche. On the power of clause-learning SAT
solvers with restarts. In Proceedings of the 15th Inter-
national Conference on Principles and Practice of Con-
straint Programming (CP09), pages 654–668, 2009.

[Segerlind et al., 2004] Nathan Segerlind, Samuel R. Buss,
and Russell Impagliazzo. A switching lemma for small
restrictions and lower bounds for k-DNF resolution. SIAM
Journal on Computing, 33(5):1171–1200, 2004.

[Stålmarck, 1996] Gunnar Stålmarck. Short resolution
proofs for a sequence of tricky formulas. Acta Informatica,
33:277–280, 1996.

[Tseitin, 1968] G.S. Tseitin. On the complexity of derivation
in propositional calculus. Studies in Constructive Mathe-
matics and Mathematical Logic, Part 2, pages 115–125,
1968.

[Zhang et al., 2001] Lintao Zhang, Conor F. Madigan,
Matthew W. Moskewicz, and Sharad Malik. Efficient con-
flict driven learning in a Boolean satisfiability solver. In
Proc. IEEE/ACM International Conference on Computer
Aided Design (ICCAD), pages 279–285, 2001.

