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AbstractIt has been observed empirially that lause learning does not sig-ni�antly improve the performane of a satis�ability solver when re-strited to learning short lauses only. This experiene is supportedby a lower bound theorem: an unsatis�able set of lauses, laiming theexistene of an ordering of n points without a maximum element, anbe solved in polynomial time when learning arbitrary lauses, but it isshown to require exponential time when learning only lauses of sizeat most n/4. The lower bound is of the same order of magnitude asa known lower bound for baktraking algorithms without any lauselearning. It is shown by proving lower bounds on the proof length ina ertain resolution proof system related to lause learning.

1 IntroductionMost ontemporary SAT solvers are based on extensions of the basi bak-traking proedure known as the DLL-algorithm [6℄. One of the most su-essful of these extensions is lause learning [11℄, whih works roughly asfollows: When the baktraking algorithm enounters a onit, i.e., a lausefalsi�ed by the urrent partial assignment α, then a sub-assignment α ′ of αthat suÆes to ause this onit is omputed. This sub-assignment α ′, thereason for the onit, an then be stored in form of a new lause C addedto the formula, viz. the unique largest lause C falsi�ed by α ′. This waythe algorithm an later baktrak earlier when again a partial assignmentextending α ′ ours in another branh of the searh tree, sine then theadded lause C beomes falsi�ed and thus auses a onit.When lause learning is implemented, a heuristi is needed to deidewhih learnable lauses to atually keep in memory, as learning a large1



number of lauses leads to exessive memory usage, whih slows the algo-rithm down rather than helping it. An obvious simple heuristi is to learnonly short lauses, i.e., to set a threshold (possibly depending on the inputlauses), and to keep in memory only lauses whose size does not exeed thethreshold.Researhers who have experimented with heuristis for lause learning,e.g. the author himself or Letz [9℄, have experiened that this simple heuris-ti is not very helpful, i.e., learning only short lauses does not signi�antlyimprove the performane of a DLL algorithm for hard formulas The presentwork aims at supporting this experiene with a rigorous mathematial anal-ysis in the form of a lower bound theorem.In earlier work [5℄, we have shown suh a lower bound for the well-knownpigeonhole priniple lauses PHPn. These formulas require time 2Ω(nlogn)to solve when learning lauses of width up to n/2 only, whereas they an besolved in time 2O(n) when learning arbitrary lauses. While this examplein priniple shows the weakness of the heuristi, it is not fully satisfatory,sine even with arbitrary learning, the time required is exponential in n, itjust takes still more time { about n! { to solve when learning short lausesonly.Here we provide another example using a set of lauses Ordn based onthe ordering priniple. These formulas an be solved in polynomial timewhen learning arbitrary lauses, but require exponential time to solve whenlearning lauses of size up to n/4 only. This lower bound is asymptotiallythe same as the known exponential lower bound [4℄ on the time for solvingOrdn by DLL algorithms without lause learning.The lower bounds on the run-time are shown by proving the same lowerbounds on the length of refutations in a ertain propositional proof system.The relationship of this proof system to the DLL algorithm with lauselearning has been established in several earlier works [5, 7℄.
2 PreliminariesA literal is a variable x or a negated variable �x, the former are positiveliterals and the latter negative literals. A lause is a disjuntion C =

a1∨. . .∨ak of literals ai, its width is w(C) = k, the number of literals in it.We identify a lause with the set of literals ourring in it, even though forlarity we still write it as a disjuntion. A lause is negative if it ontainsno positive literals. A formula in onjuntive normal form (CNF) is aonjuntion F = C1 ∧ . . . ∧Cm of lauses, it is usually identi�ed with the setof lauses {
C1, . . . , Cm

}. 2



We onsider refutation systems for formulas in CNF based on the reso-lution rule, whih are well-known to be strongly related to DLL algorithms.The proof systems under onsideration have two inferene rules: the weak-ening rule, whih allows to onlude a lause D from any lause C with
C ⊆ D, and the resolution rule, whih allows to infer the lause C∨D fromthe two lauses C ∨x and D ∨�x, provided that the variable x does not ourin either C or D, pitorially:

C ∨ x D ∨ �x
C ∨ DWe say that the variable x is eliminated in this inferene.A resolution derivation of a lause C from a CNF-formula F is a diretedayli graph (dag) with a unique sink, in whih every node has in-degreeat most 2, and with every node ν labeled with a lause Cν suh that:1. The sink is labeled with C.2. If a node ν has one predeessor ν ′, then Cν follows from Cν′ by theweakening rule.3. If a node ν has two predeessors ν1, ν2, then Cν follows from Cν1

and
Cν2

by the resolution rule.4. A soure node ν is labeled by a lause C in F.The size of a resolution derivation is the number of nodes in the dag. Aresolution refutation of F is a resolution derivation of the empty lausefrom F. We all a derivation tree-like if the underlying unlabeled dag is atree, otherwise we may all it dag-like for emphasis.Note that the weakening rule is redundant in tree-like and dag-like res-olution refutations: its uses an be eliminated from a refutation withoutinreasing the size. This may not be the ase for the proof system we de�nebelow.A resolution derivation is alled regular if on every path through thedag, eah variable is eliminated at most one. Regularity is not an essen-tial restrition on tree-like resolution sine minimal tree-like refutations arealways regular [13℄, but regular dag-like refutations an neessarily be ex-ponentially longer than general ones [1℄.Regular tree-like resolution exatly orresponds to the DLL algorithmby the following well-known orrespondene: the run of a DLL-algorithm onan unsatis�able formula F forms a regular, tree-like resolution refutation of
F without use of the weakening rule. Sine the weakening rule is redundantin tree-like resolution proofs, the onverse diretion holds as well.3



The proof system studied in this work are resolution trees with lemmas(RTL), whih are de�ned as follows: An RTL-derivation of C from F isde�ned like a tree-like resolution derivation of C from F, but here a nodewith in-degree 2 has a distinguished left and right predeessor. Then thelause 4 of the de�nition liberalized to:4a. A soure node ν is labeled by a lause D in F, or by a lause C labellingsome node ν ′ ≺ ν. In the latter ase we all C a lemma.Here ≺ denotes the post-ordering of the tree, i.e., the order in whih thenodes of the tree are visited by a post-order traversal, whih at a node νwith two predeessors �rst reursively traverses the left subtree, i.e., thesubtree rooted at the left predeessor of ν, then reursively traverses theright subtree, and then visits ν itself.An RTL-derivation is an RTL(k)-derivation if every lemma C is of width
w(C) ≤ k. An RTL-derivation of the empty lause from F is an RTL-refutation of F. Note that RTL is equivalent to dag-like resolution andRTL(0) is equivalent to tree-like resolution.A subsystem WRTI of RTL has been desribed by Buss et al. [5℄ whihorresponds to a general formulation of the DLL algorithm with lause learn-ing. This system WRTI imposes the regularity restrition on derivations,and does not inlude the full weakening rule, but inorporates some amountof weakening into a generalized resolution inferene rule, the so-alled w-resolution rule. It also restrits further the struture of sub-derivations oflauses that an be used as lemmas, whih have to be derived by input res-olution derivations. W.r.t. the length of proofs, WRTI lies between regularand general dag-like resolution.The size of a refutation of an unsatis�able formula F in WRTI has beenshown [5℄ to be polynomially related to the runtime of a shemati algorithmDLL-L-UP on F. This shema DLL-L-UP subsumes all ommonly usedlause learning strategies, inluding �rst-UIP [11℄, all-UIP, deision [15℄and rel-sat [2℄, but is slightly more general than a DLL algorithm with lauselearning by being non-greedy in the sense that it an ontinue branhingeven after a onit was reahed. In the simulation of lause learning byWRTI, the lauses learned by the algorithm are those lauses used as lemmasin the refutation.A di�erent system with similar properties was desribed by Hertel et al.[7℄, building on earlier work of van Gelder [14℄, whih an likewise be seenas a subsystem of RTL.It follows that if an unsatis�able formula F an be solved by a DLL-algorithm with lause learning in time t, then it has an RTL-refutation ofsize polynomial in t. Moreover, if the algorithm learns only lauses of width4



k, then the refutation is in RTL(k). In the following we prove lower boundson the size of refutations in RTL(k), whih thus readily translate into lowerbounds on the runtime of DLL with width-restrited lause-learning.A ommon tool in proof omplexity is to onsider formulas under a par-tial assignment, alled restrition in this ontext. We shall need a slightlymore general notion of restrition in this work.Let X be a set of variables. A restrition with renaming is a (total)funtion ρ : X → X∪ {0, 1}. The funtion ρ is extended to literals by setting
ρ(�x) :=






1 if ρ(x) = 0

0 if ρ(x) = 1

ρ(x) if ρ(x) ∈ X .For a lause C in variables X, we de�ne
C⌈ρ :=






1 if ρ(a) = 1 for some a ∈ C∨

a∈C,ρ(a)6=0

ρ(a) otherwise,where the empty disjuntion is identi�ed with the onstant 0. For a CNF-formula F over X, we de�ne
F⌈ρ :=






0 if C⌈ρ = 0 for some C ∈ F∧

C∈F,C⌈ρ6=1

C⌈ρ otherwise,where the empty onjuntion is identi�ed with 1.Just like ordinary restritions, the more general renaming restritionspreserve proofs in most propositional proof systems. We state this fat hereonly for resolution.
Proposition 1. Let R be a (tree-like) resolution proof of C from F ofsize s, and ρ a restrition with renaming. Then there is a (tree-like)resolution proof R ′ of C⌈ρ from F⌈ρ of size at most 2s.The proposition is shown by a straightforward indution along the proof
R, the proof will not be given here, as we will prove a speial ase that weatually use below.In the following we just use the word restrition for restritions withrenaming, sine ordinary restritions do not our in this work.
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3 The ordering principleThe ordering priniple expresses the fat that every �nite total ordering hasa maximal element. Its negation is expressed in propositional logi by thefollowing set of lauses Ordn over the variables xi,j for 1 ≤ i, j ≤ n with
i 6= j: �xi,j ∨ �xj,i for 1 ≤ i < j ≤ n (Ai,j)

xi,j ∨ xj,i for 1 ≤ i < j ≤ n (Ti,j)�xi,j ∨ �xj,k ∨ �xk,i for 1 ≤ i < j, k ≤ n with j 6= k (∆i,j,k)
∨

j∈[n]\{i}

xi,j for 1 ≤ i ≤ n (Mi)Let R be the relation on [n] given by an assignment to the variables, so that
i R j holds i� xi,j is set to 1. The lauses Ai,j and Ti,j state that for every iand j, either i R j or j R i holds, but not both. The lause ∆i,j,k state thatthere are no yles of length 3 in R, whih modulo the �rst two families oflauses is equivalent to R being transitive. Thus the �rst three lause setsstate that R is a total ordering. The lauses Mi then state that this orderinghas no maximal element, therefore the formula is unsatis�able.The formulas Ordn were introdued by Krishnamurthy [8℄ as potentialhard example formulas for resolution, but short regular resolution refuta-tions for them were onstruted by St�almark [12℄.
Proposition 2. There are dag-like regular resolution refutations of Ordnof size O(n3).Note that the size of the formula Ordn is Θ(n3), so the size of theserefutations is linear in the size of the formula. A general simulation of regularresolution by WRTI [5℄ yields WRTI-refutations of Ordn of polynomial size.From these, it is straightforward to onstrut a polynomial length run ofa DLL algorithm with lause learning on Ordn, making the branhing andlearning deisions suggested by the refutation.On the other hand, the following lower bound for tree-like resolutionrefutations of Ordn was shown by Bonet and Galesi [4℄. It implies that aDLL algorithm without lause learning requires exponential time to solvethese formulas.
Theorem 3. Every tree-like resolution refutation of Ordn is of size
2Ω(n).More preisely, the lower bound proved by Bonet and Galesi is Ω(2n/6).We shall prove a larger lower bound of Ω(2n/2) below. Our main result is alower bound on the size of RTL(k)-refutations of the formulas Ordn.6



Theorem 4. For k < n/4, every RTL(k)-refutation of Ordn is of size
2Ω(n).It follows that a DLL algorithm with learning requires exponential timeto solve these formulas, when learning is restrited to lauses of width lessthan n/4.The idea of the proof is similar to that of the mentioned lower bound forthe pigeonhole priniple PHPn [5℄: the goal is to show that a long derivationis required to obtain a lause that is short enough to be used as a lemma. Toprove this, look at the �rst suÆiently short lause C, and �nd a restrition
ρ falsifying C. Then the derivation of C, restrited by ρ, is a tree-likeresolution refutation of PHPn′ for some n ′ < n, and therefore needs to belarge by a known lower bound.This strategy does not quite work here diretly, sine from Ordn shortlauses an be derived very quikly. Therefore we single out a lass of usefullauses, and show that any refutation an be transformed so that only theseuseful lauses are used as lemmas, in Setion 5.After that, we again look at the �rst lause used as a lemma, and �nd arestrition falsifying it. Thereby we obtain a tree-like refutation of a smallerinstane of the ordering priniple, whih needs to be large by a knownlower bound. A lass of restritions that makes this onstrution possible isde�ned below.The argument beomes simpler if the proof is �rst brought into a normalform that ontains only negative lauses; this is done in Setion 4. Finally,in Setion 6, everything is put together to prove the theorem.As mentioned, we need to de�ne a lass of restritions that preserve theordering priniple lauses, similar to the mathing restritions that preservethe pigeonhole priniple formulas, but in ontrast to those we require re-stritions with renaming. For a non-empty set S ⊆ [n] and a total ordering
≺ on S, we de�ne the ordering restrition ρ(S,≺) by

ρ(S,≺) : xi,j 7→






1 if i, j ∈ S and i ≺ j

0 if i, j ∈ S and j ≺ i

xs,j if i ∈ S and j /∈ S

xi,s if i /∈ S and j ∈ S

xi,j otherwise,where s ∈ S is arbitrary but �xed, e.g. s := maxS. We let σ range overordering restritions, and for σ = ρ(S,≺) we let |σ| := |S|.The main property of ordering restritions is that they preserve theordering priniple formulas. 7



Proposition 5. For every ordering restrition σ with |σ| ≥ 1,Ordn⌈σ = Ordn−|σ|+1 .Proof. We shall see that the restrition of every lause from Ordn by σ =

ρ(S,≺) with |S| ≥ 1 is again one of the lauses from Ordn, with indiesfrom [n] \ S ∪ {s}. Thus after a renaming of variables we obtain the lausesOrdn−|S|+1.The lauses Ti,j, Ai,j and ∆i,j,k for i, j, k /∈ S remain una�eted by therestrition.The restrition by σ of the lauses Ti,j, where i ∈ S and j /∈ S are thelauses Ts,j, and similarly for j ∈ S and i /∈ S. The lauses Ti,j⌈σ with
{i, j} ⊆ S are satis�ed. The analogous statements hold for the lauses Ai,j.The lauses ∆i,j,k⌈σ with i ∈ S and j, k /∈ S are ∆s,j,k, and similarly forthe other situations where |{i, j, k} ∩ S| = 1.The lauses ∆i,j,k with i, j ∈ S and k /∈ S with j ≺ i are satis�ed by σ,and similarly for the symmetri situations as well as for {i, j, k} ⊆ S. For
i, j ∈ S with i ≺ j, the restrition of ∆i,j,k by σ is As,k, and similarly for thesymmetri ases.Finally, the restrition of Mi for i /∈ S is Mi over the smaller domain,for the maximal element i of S under ≺ it is Ms, and for other values i ∈ Sit is satis�ed.
4 Negative calculusWe now de�ne a normal form for RTL-derivations from Ordn, in form of anegative alulus NTL that uses only negative lauses.For a lause C in the variables of Ordn, we de�ne a negative lause CNthat is equivalent to C w.r.t. ordering restritions as follows:�xN

i,j := �xi,j

xN
i,j := �xj,i

CN :=
∨

a∈C

aNObserve that w(CN) ≤ w(C) for every lause C, but the translated lausean be stritly smaller, e.g., (x1,2 ∨ x1,3 ∨ �x2,1)
N is �x2,1 ∨ �x3,1. The negativetranslation OrdN

n of the ordering priniple is the onjuntion of the lauses:
Ai,j for 1 ≤ i < j ≤ n,

∆i,j,k for 1 ≤ i < j, k ≤ n with j 6= k, and
MN

i for 1 ≤ i ≤ n.8



It is easily seen that the negative translation ommutes with ordering re-stritions, i.e., for every lause C and ordering restrition σ we have CN⌈σ =

(C⌈σ)N. It follows from Lemma 5 and this fat that ordering restritionspreserve the negative-translated ordering priniple:
Corollary 6. For every ordering restrition σ with |σ| ≥ 1,OrdN

n⌈σ = OrdN
n−|σ|+1 .In the negative alulus NTL, the essential positive lauses Ti,j in theordering priniple are oded in an inferene rule, the negative inferene :

C ∨ �xi,j D ∨ �xj,i

C ∨ DAn NTL-derivation is de�ned exatly as an RTL-derivation, only with thenegative inferene replaing the resolution inferene. An NTL-derivationthat does not use any lemmas is alled a tree-like negative derivation. Also,an NTL-derivation is an NTL(k)-derivation if every lemma used is of widthat most k.We now provide a translation of RTL-derivations from the ordering prin-iple lauses into the negative alulus that preserves the proof size and thewidth of lemmas used.
Lemma 7. If C has an RTL(k)-derivation from Ordn of size s, then CNhas an NTL(k)-derivation from OrdN

n of size at most 2s.Proof. Let R be an RTL(k)-derivation of C from from Ordn. We onstrutan NTL(k)-derivation of CN of the appropriate size.For eah lause C in Ordn, the translation CN is in OrdN
n , so the laimholds for the axiom leaves. For the lemma leaves, we shall take are in theonstrution that the lauses CN for C ourring in R, our in RN in thesame order, so the lemmas an be used as needed. Also note that sine

w(CN) ≤ w(C), the lemmas used do not exeed the width bound.If D is derived by a weakening inferene from C ⊆ D, and C has aderivation of size s − 1, then by indution CN has an NTL(k)-derivation ofsize at most 2s − 2, and a weakening inferene yields DN ⊇ CN. The size ofthe obtained derivation is at most 2s − 1, and the ordering of lauses in thederivation is preserved.Now let C ∨ D be derived by a resolution inferene from C ∨ xi,j and
D ∨ �xi,j, whih are derived by RTL(k)-derivations of size s1 and s2, resp.,where s = s1+s2+1. By indution, there are NTL(k)-derivations of ~C∨�xj,iof size at most 2s1, and of ~D ∨ �xi,j of size at most 2s2, where ~C ⊆ CNand ~D ⊆ DN. A negative inferene then yields ~C ∨ ~D, and by a weakening9



inferene we obtain CN
∨DN. Note that CN might ontain �xj,i, or similarlyfor DN, thus we an not neessarily obtain CN

∨ DN immediately by anegative inferene. The size of the derivation is at most 2s1 + 2s2 + 2 = 2s,and the ordering is preserved.The onverse diretion also holds, we state it for ompleteness withoutproof sine we shall not need it here:
Proposition 8. If C has an NTL(k)-derivation from OrdN

n of size s,then C also has an RTL(k)-derivation from Ordn of size at most 6ns.Negative tree-like derivations are preserved under ordering restritions.Note that this does not hold for arbitrary restritions.
Proposition 9. Let R be a tree-like negative derivation of C from Fof size s, and σ an ordering restrition. There is a tree-like negativederivation R ′ of some sublause C ′ ⊆ C⌈σ from F⌈σ of size at most s.Proof. The proof is by indution of s. If s = 1, then R is just the singlelause C ∈ F, and hene C⌈σ is in F⌈σ, having a derivation of size 1 as well.If C is derived by weakening from D ⊆ C, where D has a derivation ofsize s − 1, then by the indution hypothesis there is D ′ ⊆ D⌈σ having aderivation of size at most s − 1, from whih we obtain C⌈σ ⊇ D⌈σ ⊇ D ′ bya weakening again.Now let C be derived from D1 = D ′

1 ∨ �xi,j and D2 = D ′
2 ∨ �xj,i by anegative inferene, with Di having a derivation of size si for i = 1, 2 where

s = s1+s2+1. By the indution hypothesis, we have for i = 1, 2 a derivationof D ′′
i ⊆ Di⌈σ of size at most si. We distinguish three ases.If �xi,j does not our in D ′′

1 , then we obtain C⌈σ ⊇ D ′
1⌈σ ⊇ D ′′

1 byweakening, and the resulting derivation is of size at most s1 + 1. The asewhere �xj,i does not our in D ′′
2 is dual.Otherwise, we have D ′′

1 = ~D1 ∨ �xi,j and D ′′
2 = ~D2 ∨ �xj,i, and we obtain

C ′ = ~D1 ∨ ~D2 ⊆ D ′
1⌈σ ∨ D ′

2⌈σ = C⌈σ by a negative inferene, giving aderivation of size at most s1 + s2 + 1 = s again.In partiular, if R is a refutation of F, then R ′ is a refutation of F⌈σ. Asusual, we denote R ′ by R⌈σ.We now prove a lower bound on the size of tree-like negative refutationsof the (negative-translated) ordering priniple that is slightly larger thanthe bound obtained from the translation of Theorem 3. Via Lemma 7, ityields the same larger lower bound for tree-like resolution refutations ofOrdn. The proof given here is impliit in the proof of a lower bound forregular resolution refutations of a modi�ation of Ordn [1℄.10



Lemma 10. Every tree-like negative refutation of OrdN
n is of size atleast 2(n−1)/2.Proof. Let R be a tree-like negative refutation of OrdN

n . We will de�ne asubtree T of R, and for eah node ν in T labeled with the lause Cν anordering restrition σν = ρ(Sν,≺ν) suh that Cν⌈σν = 0.The root of T is the root r of R, and we de�ne Sr = ∅ and ≺r as theempty ordering. Sine Cr = 0, the laim holds.Now suppose we have de�ned T up to a node ν with |σν| ≤ n − 2. Sineno ordering restrition of size less than n falsi�es a lause in OrdN
n , ν mustbe an inner node in R.If ν has a single suessor ν ′, and Cν is derived by weakening from

Cν′ ⊂ Cν, then Cν′⌈σν = 0, so we add ν ′ to T and set σν′ = σν.If ν has two suessors ν1 and ν2, and Cν is derived by a negativeinferene
Cν1

= C ∨ �xi,j Cν2
= D ∨ �xj,i

Cν = C ∨ Dthen we distinguish two ases.If i ∈ Sν and j ∈ Sν, then we add one of the hildren of ν to T . If i ≺ν j,then we set ν ′ = ν1, otherwise we set ν ′ = ν2, and we add ν ′ to T . In eitherase, by onstrution we have Cν′⌈σν = 0, and thus we set σν′ = σν.If i /∈ S or j /∈ S, then we add both ν1 and ν2 to T , and in this ase weall ν a branhing node. We set Sν1
= Sν2

= Sν ∪ {i, j}. We then hoosesome extension ≺ν1
⊇≺ν with i ≺ν1

j, and another extension ≺ν2
⊇≺ν with

j ≺ν2
i. By onstrution, we have Cνi

⌈σνi
= 0 and |Sνi

| ≤ |Sν| + 2 for
i = 1, 2.Now every branh in T ontains at least (n − 1)/2 branhing nodes, andtherefore T and hene R is of size at least 2(n−1)/2.
5 Cyclic clausesFor a negative lause C over the variables of Ordn, let G(C) be the diretedgraph with vertex set [n] and edges {(i, j) ; �xi,j ∈ C}. A negative lause isyli, if G(C) ontains a (direted) yle, and ayli otherwise. It is easilyseen that yli lauses have short tree-like negative refutations.
Lemma 11. Any yli lause over the variables of Ordn of width k hasa tree-like negative refutation of size at most 2min(k, n).Proof. If G(C) is yli, it ontains a yle i1, i2, . . . iℓ, i1 with ℓ ≤ min(k, n).We �rst show that for every suh yle, the lause�xi1,i2 ∨ . . . ∨ �xiℓ−1,iℓ ∨ �xiℓ,i111



has a negative derivation of length at most 2ℓ − 1. From this lause, thelause C is derived by one weakening inferene, hene it has a derivation oflength 2ℓ ≤ 2min(k, n).We prove the laim by indution on ℓ. For ℓ ≤ 3, this lause is either
Ai1,i2 or ∆iq,i2,i3 , and hene already in OrdN

n . Assume the laim holds for
ℓ, then by a negative inferene we obtain:�xi1,i2 ∨ . . . ∨ �xiℓ−1,iℓ ∨ �xiℓ,i1 �xi1,iℓ ∨ �xiℓ,iℓ+1

∨ �xiℓ+1,i1�xi1,i2 ∨ . . . ∨ �xiℓ,iℓ+1
∨ �xiℓ+1,i1and the length of the resulting derivation is 2ℓ − 1 + 2 = 2(ℓ + 1) − 1, whihshows the laim.It follows that yli lauses are useless as lemmas for refuting OrdN

n .
Lemma 12. Let R be an NTL(k)-refutation of OrdN

n of size s. Thenthere is an NTL(k)-refutation R ′ of OrdN
n suh that every lemma usedin R ′ is ayli, and |R ′| ≤ 2n · s.Proof. Replae eah yli lemma used by its derivation of size at most 2n,whih exists by Lemma 11.The �nal ingredient for our proof is the following lemma showing that ashort ayli lause an always be falsi�ed by a small ordering restrition.

Lemma 13. If C is an ayli negative lause of width w(C) ≤ k, thenthere is an ordering restrition σ of size |σ| ≤ 2k suh that C⌈σ = 0.Proof. Let S be the set of those i ≤ n that are mentioned in C, i.e., suh that�xi,j or �xj,i ours in C for some j. Clearly |S| ≤ 2k. Consider the subgraph
G of G(C) indued by S, whih only di�ers from G(C) by omitting isolatedverties. Sine C is ayli, so is G. Let ≺ be any topologial ordering of
G, i.e., a total ordering of S suh that u ≺ v for every edge (u, v) in G.Then for σ := ρ(S,≺) we have C⌈σ = 0 by onstrution, and |σ| ≤ 2k asrequired.
6 Proof of the lower boundWe are now ready to plug all ingredients together to prove our lower boundresult, Theorem 4.Proof. Let k < n/4, and let R be an RTL(k)-refutation of Ordn of size s.By Lemma 7, there is an NTL(k)-refutation RN of OrdN

n of size |RN| ≤ 2s.Lemma 12 then yields an NTL(k)-refutation R ′ of OrdN
n with only aylilemmas, of size |R ′| ≤ 4ns. 12



Let C be the �rst lause in R ′ that is used as a lemma. Then the subtree
R ′

C of R ′ rooted at C is a tree-like negative derivation of C from OrdN
n , ofsize |R ′

C| ≤ 4ns. Sine C is ayli, from Lemma 13 we obtain an orderingrestrition σ of size |σ| ≤ 2k < n/2 suh that C⌈σ = 0, and Proposition 9yields a tree-like negative refutation ~R := R ′
C⌈σ of OrdN

n−|σ|+1 of size at most
8ns. By Lemma 10, ~R is of size at least

|~R| ≥ 2(n−|σ|)/2 ≥ 2(n−2k)/2 ≥ 2n/4 ,therefore we obtain 8ns ≥ 2n/4, and thus
s ≥ 2n/4/8n = 2n/4−logn−3 = 2Ω(n)whih proves the laim.

7 Implication graph formulasIn ontrast to our result above, we now give an example where even the useof very small lemmas gives an exponential speed-up over tree-like resolution.We show that the impliation graph formulas for every graph on n vertieshave RTL(2)-refutations of linear size, whereas it is known that for somegraphs they require exponential size tree-like resolution refutations [3℄.Let a pointed graph be a direted ayli graph with a unique sink t,where every vertex that is not a soure has in-degree 2. The impliationgraph formula Imp(G) for suh a pointed graph G onsists of the sourelause xs ∨ ys for every soure s, the sink lauses �xt and �yt, and the fourimpliation lauses �xu ∨ �xv ∨ xw ∨ yw�xu ∨ �yv ∨ xw ∨ yw�yu ∨ �xv ∨ xw ∨ yw�yu ∨ �yv ∨ xw ∨ ywfor an inner vertex w with predeessors u and v.Ben-Sasson et al. [3℄ show a lower bound for tree-like resolution refuta-tions of the impliation graph formulas for ertain graphs:
Theorem 14. There are pointed graphs Gn with n verties suh thattree-like resolution refutations of Imp(Gn) require size 2Ω(n/logn).On the other hand, we have:
Theorem 15. For every graph G with n verties, there are RTL(2)-refutations of Imp(G) of size O(n).13



Proof. For every vertex w with predeessors u and v, there is a tree-likederivation of xw ∨ yw from the lemmas xu ∨ yu and xv ∨ yv as follows:First resolve xv ∨ yv with the �rst two impliation lauses, giving �xu ∨

xw ∨ yw. Also, resolve xv ∨ yv with the last two impliation lauses to give�yu ∨ xw ∨ yw. These two are resolved with xu ∨ yu to obtain xw ∨ yw.Now these derivations an be plugged together to yield an RTL(2)-derivation of xt ∨ yt from all the soure lauses. Resolving this with thesink lauses gives the desired refutation.
8 ConclusionWe have provided an example of a lass of formulas whih an be solvedquikly by DLL algorithms with lause learning, but require exponentialtime when learning is restrited to short lauses. This rigorous lower boundresult supports the experiene made in pratie that restriting to shortlauses is not a useful heuristi for deiding whih lauses to learn. Thehard examples used are the formulas Ordn based on the ordering priniple,whih frequently our as hard examples in proof omplexity.It would be nie to have another example showing this behavior that hasonly short input lauses, but it seems likely that the tehnique of this paperan be extended to provide suh an example, based on a 3-CNF extensionof the formulas Ordn or a restrition of Ordn to the edges of an expandergraph as used by Segerlind et al. [10℄. This is being investigated in ongoingwork.A major problem is to extend the lower bounds to systems with lemmasof arbitrary length, and thus to separate the systems orresponding to DLLwith lause learning [5, 7℄ { and thus the algorithm itself { from generaldag-like resolution. For this problem, the tehniques used here and in theearlier lower bound for the pigeonhole priniple [5℄ are insuÆient, sine theyrely heavily on the proofs being non-regular. But without the regularityrestrition, the systems with arbitrary lemmas are equivalent to generalresolution.
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