On the Δ_{1}^{b}-Bit-Comprehension Rule

Jan Johannsen ${ }^{1, \star}$ and Chris Pollett ${ }^{2}$
${ }^{1}$ Dept. of Mathematics U.C. San Diego
johannsn@math.ucsd.edu
${ }^{2}$ Dept. of Mathematics and Computer Science Clark University
cpollett@aleph0.clark.edu

Abstract

The theory $\Delta_{1}^{b}-C R$ of Bounded Arithmetic axiomatized by the Δ_{1}^{b}-bit-comprehension rule is defined and shown to be strongly related to the complexity class $T C^{0}$. The Σ_{1}^{b}-definable functions of Δ_{1}^{b}-CR are those in uniform $T C^{0}$, and the Σ_{2}^{b}-definable functions are computable by counterexample computations using $T C^{0}$-functions. The latter is used to show that a collapse of stronger theories to $\Delta_{1}^{b}-C R$ implies that $N P$ is contained in non-uniform $T C^{0}$.

1 Introduction

The Δ_{1}^{b}-bit-comprehension rule roughly states the following: Given a length n and a predicate $A(x)$ that has been proven to be Δ_{1}^{b}, i.e., equivalent to both an $N P_{-}\left(\Sigma_{1^{-}}^{b}\right)$ and a co-N $P_{-}\left(\Pi_{1^{-}}^{b}\right)$ predicate, there is a number w of length n such that for every $i<n$, the i th bit of w is set if and only if $A(i)$ holds. One can think of w as coding the set of small i such that $A(i)$ holds.

We consider the theory of Bounded Arithmetic $\Delta_{1}^{b}-C R$ that has this rule as its main axiom. This theory is related to the computational complexity class $T C^{0}$ of functions computable by constant-depth threshold circuits. We show that the theory C_{2}^{0} of [9], whose Σ_{1}^{b}-definable functions are $T C^{0}$, is $\forall \Sigma_{1}^{b}$-conservative over $\Delta_{1}^{b}-C R$.

Theories of Bounded Arithmetic that correspond to the complexity class $T C^{0}$ have been described earlier by the authors [9,8] as well as by Clote and Takeuti [7]. So why do we come up with yet another one? We think there are two reasons that make $\Delta_{1}^{b}-C R$ more interesting than the previous theories for $T C^{0}$.

First, one can argue that it is the weakest natural theory whose Σ_{1}^{b}-definable functions are $T C^{0}$, as the closure of the Σ_{1}^{b}-definable functions under concatenation recursion on notation (CRN) is essentially the same as Δ_{1}^{b}-comprehension.

Second, we will show that $\Delta_{1}^{b}-C R$ has a tighter connection to $T C^{0}$ than the previously considered theories: The Σ_{2}^{b}-theorems of $\Delta_{1}^{b}-C R$ can be witnessed by counterexample computations (a concept introduced by $[13,11]$ that we will define below) where the Student has the computational capabilities of $T C^{0}$.

[^0]Similar to the results of [12], this will allow us to show that a collapse of stronger theories, S_{2}^{1} or R_{2}^{1}, to $\Delta_{1}^{b}-C R$ implies that every $N P$-predicate can be decided by non-uniform $T C^{0}$-circuits.

2 Uniform and Non-Uniform $T C^{0}$

A threshold circuit is a circuit built up from boolean variables and their negations by threshold gates of the form $T_{k}\left(x_{1}, \ldots, x_{m}\right)$, where the boolean function T_{k} is defined by

$$
T_{k}\left(x_{1}, \ldots, x_{m_{2}}\right):=\left\{\begin{array}{l}
1 \text { if } \#\left\{i ; x_{i}=1\right\} \geq k \\
0 \text { otherwise }
\end{array}\right.
$$

If the variables in the circuit are x_{1}, \ldots, x_{n}, then it computes a boolean function $\{0,1\}^{n} \rightarrow\{0,1\}$. More generally, we can let it compute a function $\{0,1\}^{n} \rightarrow$ $\{0,1\}^{m}$ by allowing several outputs.

A boolean function $f:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is computed by a circuit family $\left\langle C_{n} ; n \in \mathbb{N}\right\rangle$ if for each n, C_{n} computes $\left.f\right|_{\{0,1\}^{n}}$. The non-uniform class $T C^{0}$ is defined as the class of functions computable by a family of threshold circuits of polynomial size and constant depth, i.e., there are a polynomial $p(n)$ and a constant d such that for all $n, \operatorname{size}\left(C_{n}\right) \leq p(n)$ and $\operatorname{depth}\left(C_{n}\right) \leq d$.

Non-uniform circuit families can compute functions that are not computable. For example, let K be an undecidable set of natural numbers, then the characteristic function of $\left\{1^{k} ; k \in K\right\}$ is computable by a trivial circuit family of linear size and depth 1. To overcome this sometimes unwanted feature, circuit families are required to satisfy certain uniformity conditions. For $T C^{0}$-circuits, the most suitable uniformity notion is DLogTime-uniformity, see [3] for the somewhat involved definition.

DLogTime-uniform $T C^{0}$ is a fairly natural complexity class: it is characterized by first-order logic with majority quantifiers on ordered finite models [3] in Descriptive Complexity Theory, or by acceptance in polynomial time on so-called Threshold Turing Machines [2], or by the machine-independent characterization below, which is most convenient for our purposes. Whenever we speak of $T C^{0}$ in the following without further qualification, we mean DLogTime-uniform $T C^{0}$.

For a complexity class C, the class $C /$ poly is defined as follows: A predicate $A(x)$ is in $C / p o l y$ if there is a predicate $B(x, y) \in C$ and a polynomially bounded advice function, i.e., a function f such that $|f(n)| \leq p(n)$ for some polynomial $p(n)$, and for which it holds that

$$
\forall x A(x) \leftrightarrow B(x, f(|x|))
$$

Advice functions are used to inject non-uniformity into uniform complexity classes. For example, it is well-known that $P / p o l y$ is equal to the class of predicates computable by non-uniform circuits of polynomial size. Analogously we have the following:

Proposition 1. $T C^{0} /$ poly is the same as non-uniform $T C^{0}$.

Proof (Sketch). For each d, there is an interpreter in $T C^{0}$ that takes as inputs a threshold circuit C of depth d and an input a to C, and outputs the value computed by C on input a. Let a non-uniform threshold circuit family $\left\langle C_{n} ; n \in\right.$ $\mathbb{N}\rangle$ of depth d and size $O(p(n))$ computing $A(x)$ be given. Then $A(x) \in T C^{0} /$ poly is seen as follows: $B(x, y)$ is the interpreter for threshold circuits of depth d, and the advice $f(n)$ is an encoding of the circuit C_{n}. Obviously $B(x, f(|x|))$ is equivalent to $A(x)$.

On the other hand, let $A(x) \in T C^{0} /$ poly given by predicate $B(x, y)$ and advice function f. Then a circuit computing $A(x)$ for inputs x of length n is constructed from the circuit computing $B(x, y)$ for inputs x of length n and y of length $|f(n)|$, by plugging into y constant subcircuits computing the bits of $f(n)$.

Next we give the machine-independent characterization of $T C^{0}$ mentioned above:

Definition 1. Suppose $h_{0}(n, \boldsymbol{x}), h_{1}(n, \boldsymbol{x}) \leq 1$. A function f is defined by concatenation recursion on notation ($C R N$) from g, h_{0}, and h_{1} if

$$
\begin{aligned}
f(0, \boldsymbol{x}) & =g(\boldsymbol{x}) \\
f(2 n, \boldsymbol{x}) & =2 \cdot f(n, \boldsymbol{x})+h_{0}(n, \boldsymbol{x}), \text { provided } n \neq 0 \\
f(2 n+1, \boldsymbol{x}) & =2 \cdot f(n, \boldsymbol{x})+h_{1}(n, \boldsymbol{x})
\end{aligned}
$$

Let $i_{k}^{n}\left(x_{1}, \ldots x_{n}\right):=x_{k}, s_{0}(x):=2 x, s_{1}(x)=2 x+1,|x|:=\left\lceil\log _{2}(x+1)\right\rceil$, $x \# y:=2^{|x| \cdot|y|}$ and $\operatorname{Bit}(x, i):=\left\lfloor\frac{x}{2^{2}}\right\rfloor \bmod 2$. The following characterization of the number-theoretic functions in $T C^{0}$ was given in [7]:

Proposition 2. The class $T C^{0}$ is the smallest class of functions that contains $0, i_{k}^{n}, s_{0}, s_{1}$, multiplication $\cdot \#,|x|$, Bit and which is closed under composition and $C R N$.

3 Theories of Bounded Arithmetic

We briefly review the necessary background on Bounded Arithmetic, for more information see [4] or [10]. The language L_{2} of Bounded Arithmetic comprises the usual signature of arithmetic $0, S,+,-, \cdot, \leq$, together with function symbols for $\left\lfloor\frac{1}{2} x\right\rfloor, M S P(x, i):=\left\lfloor x / 2^{i}\right\rfloor,|x|$ and \#.

A quantifier of the form $\forall x \leq t, \exists x \leq t$ with x not occurring in t is called a bounded quantifier. Furthermore, the quantifier is called sharply bounded if the bounding term t is of the form $|s|$ for some term s. A formula is called (sharply) bounded if all quantifiers in it are (sharply) bounded.

We denote the class of quantifier-free formulas in L_{2} by open. The class of sharply bounded formulas is denoted Σ_{0}^{b} or Π_{0}^{b}. For $i \in \mathbb{N}, \Sigma_{i+1}^{b}$ (resp. Π_{i+1}^{b}) is the least class containing Π_{i}^{b} (resp. Σ_{i}^{b}) and closed under conjunction, disjunction, sharply bounded quantification and bounded existential (resp. universal) quantification.

We say that a function $f(\boldsymbol{x})$ is Σ_{i}^{b}-definable in a theory T if there is a Σ_{i}^{b} formula $A(\boldsymbol{x}, y)$ and a term $t(\boldsymbol{x})$ such that

$$
\begin{aligned}
& \mathbb{N} \vDash \forall \boldsymbol{x} A(\boldsymbol{x}, f(\boldsymbol{x})) \\
& T \vdash \forall \boldsymbol{x} \exists y \leq t(\boldsymbol{x}) A(\boldsymbol{x}, y) \\
& T \vdash \forall \boldsymbol{x}, y, z A(\boldsymbol{x}, y) \wedge A(\boldsymbol{x}, z) \rightarrow y=z
\end{aligned}
$$

$B A S I C$ denotes a set of quantifier-free axioms specifying the interpretations of the function symbols of L_{2}. It can most conveniently be taken as the set $B A S I C$ from [4] together with the axioms for $M S P$ and - from [14].

For a class of formulas Φ, the axiom schema $\phi-L I N D$ is

$$
A(0) \wedge \forall x(A(x) \rightarrow A(S x)) \rightarrow \forall x A(|x|)
$$

for each $A(x) \in \Phi$, and $\Phi-L L I N D$ is

$$
A(0) \wedge \forall x(A(x) \rightarrow A(S x)) \rightarrow \forall x A(\|x\|)
$$

for $A(x) \in \Phi$. In general, for $m \geq 1, \Phi-L^{m} I N D$ is

$$
A(0) \wedge \forall x(A(x) \rightarrow A(S x)) \rightarrow \forall x A\left(|x|_{m}\right)
$$

for $A(x) \in \Phi$, where $|x|_{1}:=|x|$ and $|x|_{m+1}:=\left||x|_{m}\right|$.
The theory S_{2}^{i} is the theory axiomatized by the BASIC axioms and Σ_{i}^{b} $L I N D$, and R_{2}^{i} is the theory given by $B A S I C$ and $\Sigma_{i}^{b}-L L I N D$.

Definition 2. Given a term $t \in L_{2}$ we define a monotonic L_{2}-term t^{*} as follows: If t is constant or a variable, then $t=t^{*}$. If t is $f(s)$, where f is a unary function symbol, then t^{*} is $f\left(s^{*}\right)$. If t is $s_{1} \circ s_{2}$ for \circ a binary operation other than - or MSP, then t^{*} is $s_{1}^{*} \circ s_{2}^{*}$. Lastly, if t is $s_{1}-s_{2}$ or $\operatorname{MSP}\left(s_{1}, s_{2}\right)$, then t^{*} is s_{1}^{*}.

It is easily proved in $B A S I C+$ open-LIND that t^{*} is monotonic, and $t \leq t^{*}$. The following terms will be used frequently below. Let

$$
\begin{aligned}
2^{|x|} & :=1 \# x \\
\bmod 2(x) & :=x-2 \cdot\left\lfloor\frac{1}{2} x\right\rfloor \\
\operatorname{Bit}(x, i) & :=\bmod 2(M S P(x, i)) \\
2^{\min (x,|y|)} & :=M S P\left(2^{|y|},|y|-x\right) \\
L S P(x, i) & :=x-2^{\min (i,|x|)} \cdot M S P(x, i) \\
\beta_{a}(w, i) & :=\operatorname{MSP}(L S P(w, S i \cdot|a|), i \cdot|a|)
\end{aligned}
$$

so that $\operatorname{LSP}(x,|y|)$ returns the number consisting of the last $|y|$ bits of x, and if w codes a sequence $\left\langle b_{1}, \ldots, b_{\ell}\right\rangle$ with $\left|b_{i}\right| \leq|a|$ for all i, then $\beta_{a}(w, i)=b_{i}$. The code for this sequence is simply the number w whose binary representation consists of a 1 followed by the binary representations of the b_{i} concatenated,
each padded with zeroes to be of exact length $|a|$. If we set $b d(a, s):=2(2 a \# 2 s)$, then $b d(a, s)$ is thus a bound on the code for a sequence of length $|s|$ with each item bounded by a.

We also define a pairing operation that does not rely on an explicitly mentioned bound. Let $B=2^{|\max (x, y)|}$. Pairs are coded as $\langle x, y\rangle:=(B+y)$. $2 B+(B+x)$. The terms $(w)_{1}:=\beta_{\left\lfloor\frac{1}{2}|w|\right\rfloor-1}\left(0, \beta_{\left\lfloor\frac{1}{2}|w|\right\rfloor}(0, w)\right)$ and $(w)_{2}:=$ $\beta_{\left\lfloor\frac{1}{2}|w|\right\rfloor-1}\left(0, \beta_{\left\lfloor\frac{1}{2}|w|\right\rfloor}(1, w)\right)$, project out the left and right coordinates from an ordered pair. To check if w is a pair we use the formula

$$
\operatorname{ispair}(w):=\operatorname{Bit}\left(w,\left\lfloor\frac{1}{2}|w|\right\rfloor-1\right)=1 \wedge 2 \cdot\left|\max \left((w)_{1},(w)_{2}\right)\right|+2=|w|
$$

For a class of formulas Φ, the replacement scheme $B B \Phi$ is

$$
\begin{aligned}
\forall x \leq|s| \exists & y \leq t(x) A(x, y) \rightarrow \\
& \exists w<b d\left(t^{*}(|s|), s\right) \forall x \leq|s| \beta_{t^{*}(|s|)}(w, x) \leq t(x) \wedge A\left(x, \beta_{t *(|s|)}(w, x)\right)
\end{aligned}
$$

for each $A(x, y) \in \Phi$.
The theory C_{2}^{0} is defined as $B A S I C+$ open-LIND $+B B \Sigma_{0}^{b}$. The following theorem summarizes some relations between Σ_{i}^{b}-definability in the theories defined and computational complexity.

Theorem 1. - The Σ_{i}^{b}-definable functions in S_{2}^{i} are exactly those in $F P^{\Sigma_{i-1}^{P}}$, for each $i \geq 1$ [4].

- The Σ_{1}^{b}-definable functions in R_{2}^{1} are exactly those in $N C[1,5]$.
- The Σ_{1}^{b}-definable functions in C_{2}^{0} are exactly those in $T C^{0}[8,9]$.

The comprehension axiom for formula $A(x)$, denoted $C O M P_{A}(a)$, is the formula

$$
\exists y<2^{|a|} \forall x<|a|(\operatorname{Bit}(y, x)=1 \hookrightarrow A(x)) .
$$

The Δ_{1}^{b}-comprehension rule, Δ_{1}^{b} - $C O M P$, is the following inference rule

$$
\frac{A(x) \leftrightarrow B(x)}{C O M P_{A}(t)}
$$

where $A(x)$ is Σ_{1}^{b} and $B(x)$ is Π_{1}^{b}, and t is an arbitrary L_{2}-term. Note that this rule is different from the possibly stronger Δ_{1}^{b}-comprehension axiom

$$
\forall x(A(x) \leftrightarrow B(x)) \rightarrow C O M P_{A}(a)
$$

thus it is essential that in a sequent calculus context, the rule must not have any side formulas.

Definition 3. Let $\Delta_{1}^{b}-C R$ be the theory axiomatized by BASIC, open-LIND and the Δ_{1}^{b}-COMP rule.

In [9], it is proved that C_{2}^{0} proves the $\Delta_{1}^{b}-C O M P$ axiom, therefore $\Delta_{1}^{b}-C R$ is a subtheory of C_{2}^{0}. But we will show that C_{2}^{0} is not much stronger:

Theorem 2. C_{2}^{0} is $\forall \Sigma_{1}^{b}$-conservative over $\Delta_{1}^{b}-C R$.
This implies immediately:
Corollary 1. The Σ_{1}^{b}-definable functions of $\Delta_{1}^{b}-C R$ are precisely $T C^{0}$.
Hence $S_{2}^{1}=\Delta_{1}^{b}-C R$ implies $P=T C^{0}$, and $R_{2}^{1}=\Delta_{1}^{b}-C R$ implies $N C=T C^{0}$. We will show that the connection between the theory $\Delta_{1}^{b}-C R$ and $T C^{0}$ is still tighter: the Σ_{2}^{b}-theorems of $\Delta_{1}^{b}-C R$ can be witnessed by a type of interactive $T C^{0}$-computations to be defined below. This will allow us to show that the equality of Δ_{1}^{b} - $C R$ to either of the stronger theories S_{2}^{1} or R_{2}^{1} implies a further collapse of complexity classes:

Theorem 3. If $S_{2}^{1}=\Delta_{1}^{b}-C R$ or $R_{2}^{1}=\Delta_{1}^{b}-C R$, then $N P$ is contained in nonuniform $T C^{0}$.

The method could further be generalized to show that $N P \subseteq$ non-uniform $T C^{0}$ follows from $\Delta_{1}^{b}-C R \vdash \Sigma_{1}^{b}-L^{m} I N D$ for any $m>0$.

The following further axiom schemes will be used below. The Σ_{1}^{b}-lengthmaximization scheme, $\Sigma_{1}^{b}-L M A X$, is the axiom

$$
\exists x \leq a A(x) \rightarrow \exists x \leq a(A(x) \wedge \forall y \leq a(|y|>|x| \rightarrow \neg A(y)))
$$

for every Σ_{1}^{b}-formula $A(x)$. Similarly, the Σ_{1}^{b}-double-length-maximization scheme, $\Sigma_{1}^{b}-L L M A X$, is the axiom

$$
\exists x \leq a A(x) \rightarrow \exists x \leq a(A(x) \wedge \forall y \leq a(\|y\|>\|x\| \rightarrow \neg A(y)))
$$

for every Σ_{1}^{b}-formula $A(x)$. The following proposition is well-known.
Proposition 3. $S_{2}^{1} \vdash \Sigma_{1}^{b}-L M A X$ and $R_{2}^{1} \vdash \Sigma_{1}^{b}-$ LLMAX. In fact, $\Sigma_{1}^{b}-L M A X$ is equivalent to $\Sigma_{1}^{b}-L I N D$ and $\Sigma_{1}^{b}-L L M A X$ is equivalent to Σ_{1}^{b}-LLIND over $B A S I C+$ open-LIND.

4 Proof of Conservativity

The following two lemmas are well-known and easily proved by the method of [6]:

Lemma 1. The Σ_{0}^{b}-predicates are computable in $T C^{0}$. In particular, the L_{2}-base functions are in $T C^{0}$.

Lemma 2. Let f be a function in $T C^{0}$. Then the function

$$
\mu j<|x|(f(j, x)=0)
$$

is also in $T C^{0}$.
Lemma 3. $\lfloor|a| /|b|\rfloor$ is contained in $T C^{0}$.

Proof. By Lemma 2 and Lemma 1 we can define

$$
\lfloor|a| /|b|\rfloor:=\mu n \leq|a|(|a|<(n+1)|b|) .
$$

Suppose $g(n, \boldsymbol{x}) \leq t(\boldsymbol{x})$ and s, t are L_{2}-terms. Then a length-sum is a sum of the form

$$
\sum_{n=0}^{|s|} g(n, \boldsymbol{x}) \cdot 2^{n \cdot\left|t^{*}\right|}
$$

Lemma 4. $T C^{0}$ is closed under length-sums.
Proof. Suppose we want to define the length-sum

$$
f(a, x):=\sum_{n=0}^{|a|} h(n, x) 2^{n\left|s^{*}(x)\right|}
$$

using CRN where $h(n, x) \leq s(x)$ are functions in $T C^{0}$. We use CRN to compute the bits of f from the most significant bit to the least significant bit. The function

$$
t(i, a, x):=|a| \dot{-}\left\lfloor|i| /\left|s^{*}(x)\right|\right\rfloor
$$

allows us to determine which term in f we are computing the bits from. The function

$$
p(i, x):=\left|s^{*}(x)\right|-\left(|i| \doteq\left\lfloor|i| /\left|s^{*}(x)\right|\right\rfloor\left|s^{*}(x)\right|\right) \doteq 1
$$

gives us the position within a term. Define the function f^{\prime} by CRN in the following way:

$$
\begin{aligned}
f^{\prime}(0, a, x) & =\operatorname{Bit}(p(0, x), h(t(0, a, x), x)) \\
f^{\prime}(2 i+1, a, x) & =f^{\prime}(2 i, a, x)=2 f^{\prime}(i, a, x)+\operatorname{Bit}(p(i, x), h(t(i, a, x), x))
\end{aligned}
$$

Then the desired $f(a, x)$ is $f^{\prime}\left(2^{|a|\left|s^{*}(x)\right|+|h(|a|, x)|-2}, a, x\right)$. The expression in the first component of f^{\prime} is easily defined using $\cdot, \#$, and $M S P$.

Lemma 5. Δ_{1}^{b}-CR proves the Δ_{1}^{b}-LIND axioms, and $\Delta_{1}^{b}-C R$ proves the bitextensionality axiom:

$$
|a|=|b| \wedge \forall i<|a|(\operatorname{Bit}(a, i)=\operatorname{Bit}(b, i)) \rightarrow a=b .
$$

Proof. If A is Δ_{1}^{b} in $\Delta_{1}^{b}-C R$, then $\Delta_{1}^{b}-C R$ proves the $L I N D$ axiom for A since $\Delta_{1}^{b}-C R$ proves $C O M P_{A}(a)$ and $\Delta_{1}^{b}-C R$ proves $L I N D$ on x for the formula $\operatorname{Bit}(y, x)=1$. The second statement is easily proved by LIND on x in the following Σ_{0}^{b}-formula:

$$
\forall i<|a|(i \leq x \rightarrow \operatorname{Bit}(a, i)=\operatorname{Bit}(b, i)) \rightarrow \operatorname{LSP}(a, x)=\operatorname{LSP}(b, x)
$$

We are now ready to show the functions in $T C^{0}$ are Σ_{1}^{b}-definable in $\Delta_{1}^{b}-C R$.

Theorem 4. $\Delta_{1}^{b}-C R$ can Σ_{1}^{b}-define the functions in $T C^{0}$.
Proof. The base functions symbols are obviously Σ_{1}^{b}-definable in $\Delta_{1}^{b}-C R$, and closure under composition is straightforward. So it suffices to show the Σ_{1}^{b} definable functions of $\Delta_{1}^{b}-C R$ are closed under CRN.

Suppose that f is defined by CRN from $g(x)$ and $h_{0}(n, x), h_{1}(n, x)$, where g, h_{0}, h_{1} are Σ_{1}^{b}-defined in Δ_{1}^{b} - $C R$. Define $t(a, x)$ to be

$$
\sum_{n=0}^{|a|} \operatorname{cond}\left(\operatorname{Bit}(|a|-n, a), h_{0}(n, x), h_{1}(n, x)\right) \cdot 2^{n}
$$

then $f(a, x)=g(x) \cdot 2^{|t(a, x)|}+t(a, x)$. It suffices to show the length-sum $t(a, x)$ is Σ_{1}^{b}-definable, since then $f(a, x)$ will be by composition.

Notice $k(n, x, a):=\operatorname{cond}\left(\operatorname{Bit}(|a|-n, a), h_{0}(n, x), h_{1}(n, x)\right)$ is Σ_{1}^{b}-defined in $\Delta_{1}^{b}-C R$. Let $A_{k}(n, a, x, y)$ be its defining formula. Given the other parameters, $\Delta_{1}^{b}-C R$ proves the value y is unique and bounded by 1 . Therefore $\Delta_{1}^{b}-C R$ $\vdash A_{k}(n, x, a, 1) \leftrightarrow \neg A_{k}(n, x, a, 0)$ and $A_{k}(n, x, a, 1)$ is true iff $k(n, x, a)=1$ so $k(n, x, a)=1$ is a Δ_{1}^{b}-property in $\Delta_{1}^{b}-C R$. We want to define the sum $\sum_{n=0}^{|a|-1} k(n, x, a) \cdot 2^{n} . \Delta_{1}^{b}-C O M P$ on $k(n, x, a)=1$ implies

$$
(\exists w \leq s)(\forall n \leq|a|)(\operatorname{Bit}(n, w)=1 \leftrightarrow k(n, x, a)=1),
$$

the value w is the desired sum and it can be proven unique using extensionality.

Remark 1. Given two Σ_{1}^{b}-defined in Δ_{1}^{b} - $C R$ functions f, g, the property $f(x)=$ $g(x)$ will be Δ_{1}^{b} in $\Delta_{1}^{b}-C R$. Using this, Δ_{1}^{b}-LIND, and extensionality it is not hard to show $\Delta_{1}^{b}-C R$ proves simple properties of both the μ-operation and length-sums. For instance, $\Delta_{1}^{b}-C R$ proves that if $h(n, x) \leq s(x)$ then

$$
\beta_{\left|s^{*}\right|}\left(j, \sum_{n=0}^{|a|} h(n, x) 2^{n\left|s^{*}(x)\right|}\right)=h(j, x)
$$

for $j \leq|a|$.
To prove the conservativity result, we formalize the witnessing proof for C_{2}^{0} in $\Delta_{1}^{b}-C R$. First we define a witness bounding term and witness predicate for Σ_{1}^{b}-formulas as follows:

- If $A(\boldsymbol{a}) \in \Sigma_{0}^{b}$ then $t_{A}=0$ and $W_{A}(w, \boldsymbol{a}):=A(\boldsymbol{a}) \wedge w=0$.
- If $A(\boldsymbol{a})$ is of the form $B \circ C$ where \circ is \wedge or \vee then $t_{A}:=4 \cdot\left(2^{\left|\max \left(t_{B}, t_{C}\right)\right|}\right)^{2}$ and

$$
\text { Wit }_{A}(w, \boldsymbol{a}):=\operatorname{ispair}(w) \wedge\left(\text { Wit }_{B}\left((w)_{1}, \boldsymbol{a}\right) \circ \text { Wit }_{C}\left((w)_{2}, \boldsymbol{a}\right)\right)
$$

- If $A(\boldsymbol{a})$ is of the form $\exists x \leq t B(x, \boldsymbol{a})$ where $B(x, \boldsymbol{a}) \in \Sigma_{0}^{b}$ then $t_{A}:=t$ and

$$
\text { Wit }_{A}(w, \boldsymbol{a}):=w \leq t \wedge B(w, \boldsymbol{a})
$$

- If $A(\boldsymbol{a})$ is of the form $\exists x \leq t B(x, \boldsymbol{a})$ where $B(x, \boldsymbol{a}) \in \Sigma_{1}^{b} \backslash \Sigma_{0}^{b}$, then $t_{A}:=$ $4 \cdot\left(2^{\left|\max \left(t, t_{B}\right)\right|}\right)^{2}$ and

$$
\text { Wit }_{A}(w, \boldsymbol{a}):=\operatorname{ispair}(w) \wedge(w)_{1} \leq t \wedge \text { Wit }_{B}\left((w)_{2},(w)_{1}, \boldsymbol{a}\right)
$$

- If $A(\boldsymbol{a})$ is of the form $\forall x \leq|s| B(x, \boldsymbol{a})$ where $B(x, \boldsymbol{a}) \in \Sigma_{1}^{b} \backslash \Sigma_{0}^{b}$, then $t_{A}:=$ $b d\left(t_{B}^{*}(|s|), s\right)$ and

$$
\text { Wit } \left._{A}(w, \boldsymbol{a}):=w \leq t_{A} \wedge \forall x \leq|s| \text { Wit }_{B}\left(\beta_{t_{A}}(x, w), x, \boldsymbol{a}\right)\right)
$$

The following lemma is true for this witness predicate:
Lemma 6. If $A(\boldsymbol{a}) \in \Sigma_{1}^{b}$, then:
(a) Wit $_{A}$ is a Σ_{0}^{b}-predicate.
(b) $\Delta_{1}^{b}-C R \vdash \exists w \leq t_{A}(\boldsymbol{a}) W i t_{A}(w, \boldsymbol{a}) \rightarrow A(\boldsymbol{a})$.

Proof. Part (a) follows from the definition of witness and since β and the pairing functions are defined by L_{2}-terms. Part (b) is easily proved by induction on the complexity of A.

To prove the witnessing theorem, we formalize C_{2}^{0} in a sequent calculus $L K B$ that has special rules for the introduction of bounded quantifiers (see [4]). In this formalization, open- $L I N D$ and $B B \Sigma_{0}^{b}$ are given as inference rules, which are shown in the proof below.

Theorem 5. Suppose

$$
C_{2}^{0} \vdash \Gamma \Longrightarrow \Delta
$$

where Γ and Δ are cedents of Σ_{1}^{b}-formulas. Let \boldsymbol{a} be the free variables in this sequent. Then there is a $T C^{0}$ function f which is Σ_{1}^{b}-defined in Δ_{1}^{b} - $C R$ such that:

$$
\Delta_{1}^{b}-C R \vdash \text { Wit }_{\wedge \Gamma}(w, \boldsymbol{a}) \rightarrow \text { Wit }_{\vee} \Delta(f(w, \boldsymbol{a}), \boldsymbol{a})
$$

Proof. This is proved by induction on the number of sequents in a C_{2}^{0} proof of $\Gamma \Longrightarrow \Delta$. By cut elimination, we can assume all the sequents in the proof are Σ_{1}^{b}. Most of the cases are similar to previous witnessing arguments so we only show the (\forall : right) case, open-LIND case and the $B B \Sigma_{0}^{b}$ case.
(\forall :right case) Suppose we have the inference:

$$
\frac{b \leq t, \Gamma \Longrightarrow A(b), \Delta}{\Gamma \Longrightarrow \forall x \leq t A(x), \Delta}
$$

By the induction hypothesis there is a $T C^{0}$ function g such that

$$
\Delta_{1}^{b}-C R \vdash \text { Wit }_{b \leq t \wedge \wedge} \wedge(w, \boldsymbol{a}, b) \rightarrow \text { Wit }_{A} \vee \vee \Delta(g(w, \boldsymbol{a}, b), \boldsymbol{a}, b) .
$$

By cut-elimination, $\forall x \leq t A(x)$ is a Σ_{1}^{b}-formula, so t must be of the form $t=|s|$. There are two case: where A is Σ_{0}^{b} and where A is $\Sigma_{1}^{b} \backslash \Sigma_{0}^{b}$. In the first case, let y be $\mu i \leq|s| \neg A(i)$ and define f to be $g(\langle 0, w\rangle, \boldsymbol{a}, y)$. The 0 in the ordered pair is
since $W_{i t_{b \leq t}}(w, b)=b \leq t \wedge w=0$. This is in $T C^{0}$ by Lemma 1 and Lemma 2 and it is not hard to show that

$$
\Delta_{1}^{b}-C R \vdash \text { Wit }_{\Gamma}(w, \boldsymbol{a}) \rightarrow \text { Wit }_{\forall x \leq|s| A \vee} \vee \Delta(f(w, \boldsymbol{a}), \boldsymbol{a}) .
$$

In the second case, since $W i t_{A}$ is a \sum_{0}^{b}-formula, its characteristic function $\chi_{W i t_{A}}$ is in $T C^{0}$. Let k be the function

$$
k(w, \boldsymbol{a})=\mu j \leq|s|\left[\neg W i t_{A}\left((g(\langle 0, w\rangle, \boldsymbol{a}, j))_{1}, \boldsymbol{a}, j\right)\right] .
$$

Let $t^{\prime}:=\left(t_{A}(t)\right)^{*}$ where $t_{A(x)}$ is from Lemma 6 . Now define $f(w, \boldsymbol{a})$ from k as follows

$$
f(w, \boldsymbol{a})= \begin{cases}\left\langle\sum_{j=0}^{|s|}(g(\langle 0, w\rangle, \boldsymbol{a}, j))_{1} \cdot 2^{j \cdot\left|t^{\prime}\right|}, 0\right\rangle & \text { if } k(w, \boldsymbol{a})=|s|+1 \\ \left\langle 0,(g(\langle 0, w\rangle, \boldsymbol{a}, k(w, \boldsymbol{a})))_{2}\right\rangle & \text { otherwise }\end{cases}
$$

then using the remark after Theorem 4

$$
\Delta_{1}^{b}-C R \vdash W i t_{\Gamma}(w, \boldsymbol{a}) \rightarrow \text { Wit }_{\forall x \leq|s| A \vee} \vee \Delta(f(w, \boldsymbol{a}), \boldsymbol{a}) .
$$

(open-LIND case) Suppose we have the inference

$$
\frac{A(b), \Gamma \Longrightarrow A(S b), \Delta}{A(0), \Gamma \Longrightarrow A(|s|), \Delta}
$$

where A is an open formula and s is a term in L_{2}. By the induction hypothesis there is a $T C^{0}$ function g such that

$$
\Delta_{1}^{b}-C R \vdash W^{b} t_{A(b) \wedge} \wedge \Gamma(w, b, \boldsymbol{a}) \rightarrow W_{i t_{A(S b)} \vee \vee \Delta(g(w, b, \boldsymbol{a}), b, \boldsymbol{a}) .}
$$

From our definition of the Wit predicate and Lemma 1, we know $T C^{0}$ contains the predicate Wit $\vee \Delta$. Define

$$
\left.f(w, \boldsymbol{a}):=g\left(w,(\mu y<|s|)\left(\neg \text { Wit }_{\vee} \Delta((g(w, y, \boldsymbol{a})))_{2}, y, \boldsymbol{a}\right)\right), \boldsymbol{a}\right)
$$

Notice Wit $_{A}(v, b, \boldsymbol{a}):=A \wedge v=0$ as A is open, so the value of a witness to A does not depend on b. So it will witness $A(b)$ for all $b \leq|s|$. Using this, the idea is $f(w, \boldsymbol{a})$ runs g on the least value y less than $|s|$ that produces a witness for Δ. If no such value exists then it must be the case that $A(|s|)$ holds and so, as A is open, the cedent is trivially witnessed. From this it is not hard to show:

$$
\Delta_{1}^{b}-C R \vdash W i t_{A(0) \wedge} \wedge \Gamma(w, \boldsymbol{a}) \rightarrow \text { Wit }_{A(|s|)} \vee \vee \Delta(f(w, \boldsymbol{a}), \boldsymbol{a}) .
$$

($B B \Sigma_{0}^{b}$:case) Suppose we have the inference:

$$
\frac{\Gamma \Longrightarrow \forall x \leq|s| \exists y \leq t A(x, y), \Delta}{\Gamma \Longrightarrow \exists v \leq b d\left(t^{*}(|s|), s\right) \forall x \leq|s|\left(\beta_{t^{*}(|s|)}(x, v) \leq t \wedge A\left(x, \beta_{t^{*}(|s|)}(x, v)\right)\right), \Delta}
$$

where s, t are terms in L_{2} and $A(x, y) \in \Sigma_{0}^{b}$. By the induction hypothesis there is a $T C^{0}$ function g such that

$$
\Delta_{1}^{b}-C R \vdash \text { Wit }_{\wedge \Gamma}(w, \boldsymbol{a}, b) \rightarrow \text { Wit }_{\forall x \leq|s| \exists y \leq t A} \vee \vee \Delta(g(w, \boldsymbol{a}), \boldsymbol{a})
$$

For this case, it suffices to notice that the predicates

$$
\text { Wit } \text { }_{\forall x \leq|s| \exists y \leq t A}
$$

and

$$
\text { Wit }_{\exists v \leq b d\left(t^{*}(|s|), s\right) \forall x \leq|s|\left(\beta_{\left.t^{*}(s| | x \mid)\right)}(x, v) \leq t \wedge A\right)}
$$

are the same. Hence, if we let $f=g$ then

$$
\Delta_{1}^{b}-C R \vdash \text { Wit }_{\wedge \Gamma}(w, \boldsymbol{a}, b) \rightarrow \text { Wit }_{\exists w \leq b d\left(t^{*}, s\right) \forall x \leq|s| A \vee} \vee \Delta(f(w, \boldsymbol{a}), \boldsymbol{a})
$$

This completes the cases and the proof.
Now Thm. 2 follows from this witnessing theorem as follows: Suppose C_{2}^{0} proves a Σ_{1}^{b}-formula $A(\boldsymbol{x})$. Then by Theorem 5 , taking Γ to be the empty cedent, $\Delta_{1}^{b}-C R \vdash$ Wit $_{A}(g(\boldsymbol{x}), \boldsymbol{x})$, where g is a $T C^{0}$ function. By Lemma 6, we have $\Delta_{1}^{b}-C R \vdash A(\boldsymbol{x})$.

5 Counterexample Computations with $T C^{0}$ functions

In this section we view binary relations $R(x, y)$ in $T C^{0}$ as optimization problems: given x, the task is to find a solution y of maximal length $|y| \leq|x|$ such that $R(x, y)$ holds. We consider a particular way of solving such optimization problems, viz. counterexample computations as introduced implicitly in [12] and made explicit in $[13,11]$.

A counterexample computation is performed by two agents: Student, who has limited computational power, and Teacher who has unlimited knowledge. In order to find a maximal solution, Student can ask questions of the form "Is y a maximal solution?", to which Teacher can either reply "yes" or provide a counterexample, i.e., a better solution.

There are two natural measures of complexity for counterexample computations: the computational power of Student, and the number of counterexamples. Note that every optimization problem can be solved with $O(|x|)$ many counterexamples by the trivial Student, who just repeats each counterexample provided as his next question.

Here we are interested in the case where Student has the computational capabilities of $T C^{0}$ and the number of counterexamples is bounded by a constant. We will show that the hypothesis that every optimization problem in $T C^{0}$ can be computed in this way, formalized by principle $\Omega\left(T C^{0}\right)$ below, implies that every $N P$ predicate is computable by non-uniform $T C^{0}$ circuits.

For an optimization problem $R(x, y)$ let $R^{*}(x, y, z)$ be defined by

$$
|y| \leq|x| \wedge(y>0 \rightarrow R(x, y)) \wedge(|y|<|z| \leq|x| \rightarrow \neg R(x, z)),
$$

so that $\forall z R^{*}(x, y, z)$ expresses that $y=0$ or y is a maximal solution.
Principle $\Omega\left(T C^{0}\right)$: for every predicate $R(x, y) \in T C^{0}$ there are $k \in \mathbb{N}$ and functions $f_{1}, \ldots f_{k} \in T C^{0}$, such that

Either $\quad \forall z R^{*}\left(a, f_{1}(a), z\right) \quad$ or if b_{1} is such that $\neg R^{*}\left(a, f_{1}(a), b_{1}\right)$, then either $\forall z R^{*}\left(a, f_{2}\left(a, b_{1}\right), z\right)$ or if b_{2} is such that $\neg R^{*}\left(a, f_{2}\left(a, b_{1}\right), b_{2}\right)$,
then $\quad \forall z R^{*}\left(a, f_{k}\left(a, b_{1}, \ldots, b_{k-1}\right), z\right)$.
Proposition 4. $\Omega\left(T C^{0}\right)$ implies $N P \subseteq$ non-uniform $T C^{0}$.
Proof. Let A be $N P$-complete under $T C^{0}$-reductions, and be given by $x \in A \leftrightarrow$ $\exists w \leq x B(x, w)$ with $B \in T C^{0}$. We say that w witnesses x if $w \leq x \wedge B(x, w)$ holds.

We will construct an advice function h with $|h(n)| \leq n^{O(1)}$ and $g \in T C^{0}$ such that $g(x, h(|x|))$ witnesses x for all $x \in A$, i.e.,

$$
\begin{equation*}
x \in A \text { iff } B(x, g(x, h(|x|))), \tag{1}
\end{equation*}
$$

and hence $A \in T C^{0} / p o l y$, assuming $\Omega\left(T C^{0}\right)$.
Let the relation $R(a, b)$ be defined by
a and b code sequences, and length $(a) \geq$ length (b)
and for all $i \leq$ length $(b):(b)_{i}$ witnesses $(a)_{i}$.
Obviously $R \in T C^{0}$, so by $\Omega\left(T C^{0}\right)$ there are functions f_{1}, \ldots, f_{k} that for a sequence $a=\left\langle x_{1}, \ldots, x_{m}\right\rangle$ interactively compute a maximal sequence b of witnesses for an initial segment of a.

For a fixed length n, let $V_{1}:=\{x \in A ;|x|=n\}$, and for each $x \in V_{1}$, let $w(x)$ be a canonical witness. Algorithm W below computes a pair $\langle j, w\rangle$ from an input $a=\left\langle x_{1}, \ldots, x_{k}\right\rangle \in V_{1}^{k}$ such that w witnesses x_{j}. Since there is a

```
\(y:=f_{1}(a)\)
if length \((y) \geq 1\) and \(R(a, y)\) then
    output \(\left\langle 1,(y)_{1}\right\rangle\)
    stop
fi
for \(j\) from 2 to \(k\) do
    \(y:=f_{j}\left(a, b_{1}, \ldots, b_{j-1}\right)\)
    if length \((y) \geq j\) and \(R(a, y)\) then
        output \(\left\langle j,(y)_{j}\right\rangle\)
        stop
    fi
od
```

Algorithm W. b_{j} is defined as $\left\langle w\left(x_{1}\right), \ldots, w\left(x_{j}\right)\right\rangle$.
sequence of witnesses $b_{0}=\left\langle w\left(x_{1}\right), \ldots, w\left(x_{k}\right)\right\rangle$ of length k, a length maximal b with $R(a, b)$ has to be of length k. By our assumption of $\Omega\left(T C^{0}\right)$, such a length
maximal b is computed by one of the $f_{j}\left(a, b_{1}, \ldots, b_{j-1}\right)$, so Algorithm W halts at one of the stop instructions for every $a \in V_{1}^{k}$.

For a set $Q \subseteq V_{1}$ with $|Q|=k-1$ and $v \in V_{1} \backslash Q$ we define Q helps v if for some ordering $a:=\left\langle x_{1}, \ldots, x_{j-1}, v, x_{j+1}, \ldots, x_{k}\right\rangle$ of $Q \cup\{v\}$, Algorithm W on input a outputs a pair $\langle j, w\rangle$ such that w witnesses v.

As there is only a constant number k ! of orderings of $Q \cup\{v\}$, there is a function in $T C^{0}$ that, given Q, v and canonical witnesses for the elements of Q, uses Algorithm W to decide whether Q helps v, and if so computes a witness $w(Q, v)$ for v.

There are at least $\binom{\left|V_{1}\right|}{k}$ pairs $\langle Q, v\rangle$ such that Q helps v, but there are only $\left(\begin{array}{l}\left.\left\lvert\, \begin{array}{l}\left|V_{1}\right| \\ k-1\end{array}\right.\right) \text { possible sets } Q \text { of size } k-1 \text {. Hence there is a set } Q_{1} \subseteq V_{1} \text { such that } Q_{1}, ~(1)\end{array}\right.$ helps at least $\frac{\left|V_{1}\right|-k+1}{k}$ different elements of V_{1}.

Inductively we define $V_{i+1}:=\left\{v \in V_{i} ; Q_{i}\right.$ does not help $\left.v\right\}$, and by the same argument as above, if $\left|V_{i+1}\right|>k$ then there is a set $Q_{i+1} \subseteq V_{i+1}$ that helps at least $\frac{\left|V_{i+1}\right|-k+1}{k}$ elements of $V_{i+1} \backslash Q_{i+1}$.

Let t be the least j such that $\left|V_{j}\right| \leq k$, then since $\left|V_{i+1}\right|<\left(\frac{k-1}{k}\right)^{i}\left|V_{1}\right|+k$ we get $t=\left\lceil\log _{k /(k-1)}\left|V_{1}\right|\right\rceil=O(n)$. For $i<t$ let S_{i} be the sequence of pairs $\langle x, w(x)\rangle$ for $x \in Q_{i}$, and let S_{t} be the sequence of pairs $\langle x, w(x)\rangle$ for $x \in V_{t}$. Finally, let the advice $h(n)$ be $S:=\left\langle S_{1}, \ldots, S_{t}\right\rangle$. Note that $|S|=O\left(k n^{2}\right)$.

Finally, Algorithm G computes a witness for $v \in V_{1}$ from inputs v and S. By the remark above, lines 5-6 of Algorithm G can be implemented in $T C^{0}$,

```
if v}\mathrm{ occurs in S then
    output w(v) (* also occurs in S next to v *)
else
    for }j\in{1,\ldots,t-1} do in parallel
        if Q , helps v}\mathrm{ then
                wj:=w(Q (Q,v)
    od
    output w}\mp@subsup{w}{j}{}\mathrm{ with }j<t\mathrm{ minimal
fi
```


Algorithm G.

and hence the function g computed by Algorithm G is in $T C^{0}$. By construction $g(x, h(|x|))$ witnesses x iff there is a witness for x, hence the equivalence (1) holds.

We now consider a variant where the measure to be maximized is $\|y\|$ instead of $|y|$. Principle $\Omega^{*}\left(T C^{0}\right)$ is thus exactly the same as $\Omega\left(T C^{0}\right)$, only with the relation $R^{*}(x, y, z)$ replaced by $R^{* *}(x, y, z)$, which is defined as

$$
\|y\| \leq\|x\| \wedge(y>0 \rightarrow R(x, y)) \wedge(\|y\|<\|z\| \leq\|x\| \rightarrow \neg R(x, z)) .
$$

Proposition 5. $\Omega^{*}\left(T C^{0}\right)$ implies $N P \subseteq$ non-uniform $T C^{0}$.

Proof. Modify the proof of Prop. 4 as follows: Let $\ell:=2^{k-1}$. Algorithm W is replaced by Algorithm W^{*}, which gets input $a=\left\langle x_{1}, \ldots, x_{\ell}\right\rangle \in V_{1}^{\ell}$. Now again

```
y:= f
if length(y)\geq1 and R(a,y) then
    output }\langle1,(y\mp@subsup{)}{1}{}
    stop
fi
for }j\mathrm{ from 2 to k do
    y:= f
    if length(y) \geq2 2-1}\mathrm{ and }R(a,y) the
        w:=\langle(y)
        output }\langlej,w
        stop
    fi
od
```

Algorithm $\mathbf{W}^{*} . b_{j}$ is defined as $\left\langle w\left(x_{1}\right), \ldots, w\left(x_{2 j-1}\right)\right\rangle$.
there is a sequence of witnesses $b_{0}=\left\langle w\left(x_{1}\right), \ldots, w\left(x_{\ell}\right)\right\rangle$ of length ℓ, and hence $\left|b_{0}\right|=n \ell$, so $\left\|b_{0}\right\|=k+|n|$. Hence any sequence b with $R(a, b)$ and $\|b\|$ maximal has to be of length ℓ, and by the assumption $\Omega^{*}\left(T C^{0}\right)$, such a maximal b is found by one of the $f_{j}\left(a, b_{1}, \ldots, b_{j-1}\right)$.

For $Q \subseteq V_{1}$ with $|Q|=\ell-1$ and $v \in V_{1} \backslash Q$, define Q helps v if for some ordering $a:=\left\langle x_{1}, \ldots, x_{m-1}, v, x_{m+1}, \ldots, x_{\ell}\right\rangle$ of $Q \cup\{v\}$, Algorithm W^{*} on input a outputs a pair $\langle j, w\rangle$ such that either $j=m=1$ and w witnesses v, or $2^{j-2}<m \leq 2^{j-1}$ and w is a sequence of length 2^{j-2} such that $(w)_{m-2^{j-2}}$ witnesses v.

The definition of the advice S is as before, only with k replaced by ℓ everywhere. So Algorithm G on input v and S will still output a witness for v if there is one.

6 KPT witnessing for $\Delta_{1}^{b}-C R$

In [12] it was shown that the $\exists \forall \Sigma_{i+1^{-}}^{b}$-theorems of T_{2}^{i} can be witnessed by counterexample computations using $F P^{\Sigma_{i}^{P}}$-functions and constantly many counterexamples. For this to be true for $i=0, T_{2}^{0}$ needs to be defined as having function symbols for all functions in FP.

Analogously, we now show that the $\exists \forall \Delta_{1}^{b}$-theorems of $\Delta_{1}^{b}-C R$ can be witnessed by counterexample computations using $T C^{0}$-functions and constantly many counterexamples. This will be the main tool for proving Thm. 3, but the witnessing theorem and its proof might be of independent interest.

Theorem 6. Assume $\Delta_{1}^{b}-C R \vdash \exists x \forall y A(a, x, y)$, where A is Δ_{1}^{b} w.r.t. $\Delta_{1}^{b}-C R$. Then there are $k \in \mathbb{N}$ and functions $f_{1}, \ldots, f_{k} \in T C^{0}$, that are Σ_{1}^{b}-definable in
$\Delta_{1}^{b}-C R$, s.t. $\Delta_{1}^{b}-C R$ proves

$$
A\left(a, f_{1}(a), b_{1}\right) \vee A\left(a, f_{2}\left(a, b_{1}\right), b_{2}\right) \vee \ldots \vee A\left(a, f_{k}\left(a, b_{1}, \ldots, b_{k-1}\right), b_{k}\right)
$$

Proof. Let $\left\{f_{n} ; n \geq 1\right\}$ be an enumeration of all functions in $T C^{0}$ s.t. f_{n} is n-ary and every function in $T C^{0}$ occurs in the list infinitely often (possibly with dummy arguments). Assume that A is Δ_{1}^{b} w.r.t. $\Delta_{1}^{b}-C R$ and $\Delta_{1}^{b}-C R \vdash \exists x \forall y A(a, x, y)$, but the conclusion of the theorem does not hold. Then by compactness there is a model

$$
M \vDash \Delta_{1}^{b}-C R+\left\{\neg A\left(c, f_{1}(c), d_{1}\right), \ldots, \neg A\left(c, f_{n}\left(c, d_{1}, \ldots, d_{n-1}\right), d_{n}\right), \ldots\right\}
$$

for new constants c, d_{1}, d_{2}, \ldots
Define $M^{*}:=\left\{f_{1}(c), f_{2}\left(c, d_{1}\right), \ldots, f_{n}\left(c, d_{1}, \ldots, d_{n-1}\right), \ldots\right\}$. By the construction of the enumeration $f_{n}, \mathbb{N} \cup\left\{c, d_{1}, d_{2}, \ldots\right\} \subseteq M^{*}$, and M^{*} is closed under all functions in $T C^{0}$.

We first show $M^{*} \preceq_{\Sigma_{0}^{b}} M$, i.e., for every Σ_{0}^{b}-formula $B(\boldsymbol{x})$ and all parameters $\boldsymbol{a} \in M^{*}$,

$$
M \models B(\boldsymbol{a}) \text { iff } M^{*} \models B(\boldsymbol{a}) .
$$

This is proved by induction on the complexity of $B(\boldsymbol{x})$. The only interesting case is to show that for $B(\boldsymbol{x})=\exists y \leq|t(\boldsymbol{x})| A(\boldsymbol{x}, y), M \models B(\boldsymbol{a})$ implies $M^{*} \vDash B(\boldsymbol{a})$. Consider the function $f(\boldsymbol{x})=\mu y \leq|t(\boldsymbol{x})| A(\boldsymbol{x}, y)$. This function is in $T C^{0}$, hence $f(\boldsymbol{a}) \in M^{*}$, and if $M \models B(\boldsymbol{a})$, then $M \models A(\boldsymbol{a}, f(\boldsymbol{a}))$, therefore $M^{*} \models A(\boldsymbol{a}, f(\boldsymbol{a}))$ holds by the induction hypothesis.

Hence if $A(\boldsymbol{x})$ is Π_{1}^{b} and $B(\boldsymbol{x})$ is Σ_{1}^{b} and $\boldsymbol{a} \in M^{*}$, then $M \models A(\boldsymbol{a})$ implies $M^{*} \models A(\boldsymbol{a})$ and $M^{*} \models B(\boldsymbol{a})$ implies $M \models B(\boldsymbol{a})$.

Let $\Delta_{1}^{b}-C R_{0}$ denote $B A S I C+o p e n-L I N D$, and inductively define $\Delta_{1}^{b}-C R_{i+1}$ to be the closure of $\Delta_{1}^{b}-C R_{i}$ under unnested applications of Δ_{1}^{b} - $C O M P$, and Γ_{i} to be the set of formulas that are Δ_{1}^{b} w.r.t. $\Delta_{1}^{b}-C R_{i}$. Hence $\Delta_{1}^{b}-C R_{i+1}$ is axiomatized by all theorems of $\Delta_{1}^{b}-C R_{i}$ and the axioms $C O M P_{A}$ for all formulas $A \in \Gamma_{i}, \Delta_{1}^{b}-C R=\bigcup_{i} \Delta_{1}^{b}-C R_{i}$ and the set of formulas that are Δ_{1}^{b} w.r.t. $\Delta_{1}^{b}-C R$ is $\Gamma:=\bigcup_{i} \Gamma_{i}$.

We shall show by simultaneous induction that for all $i, M^{*} \vDash \Delta_{1}^{b}-C R_{i}$ and $M^{*} \preceq_{\Gamma_{i}} M$. Obviously $M^{*} \models B A S I C$. Now let $M^{*} \models B(0) \wedge \neg B(|a|)$ for some open formula $B(x)$ and $a \in M^{*}$. Then also $M \vDash B(0) \wedge \neg B(|a|)$, hence there is a least $b \in M$ such that $M \vDash b<|a| \wedge B(b) \wedge \neg B(b+1)$. Since the function $f(x):=\mu y<|x| \neg B(y+1)$ is in $T C^{0}, f(a)=b \in M^{*}$, and $M^{*} \models B(b) \wedge \neg B(b+1)$. This shows $M^{*} \models o p e n-L I N D$ and thus $M^{*} \models \Delta_{1}^{b}-C R_{0}$.

Now assume that $M^{*} \models \Delta_{1}^{b}-C R_{i}$, and let $B(\boldsymbol{x}) \in \Gamma_{i}$. This means there are a Σ_{1}^{b}-formula $B^{\Sigma}(\boldsymbol{x})$ and a Π_{1}^{b}-formula $B^{\Pi}(\boldsymbol{x})$ such that

$$
\Delta_{1}^{b}-C R_{i} \vdash B^{\Sigma}(\boldsymbol{x}) \hookrightarrow B(\boldsymbol{x}) \hookrightarrow B^{\Pi}(\boldsymbol{x}) .
$$

Let $\boldsymbol{a} \in M^{*}$, then we have

$$
\begin{aligned}
& M \models B(\boldsymbol{a}) \Longrightarrow M \vDash B^{\Pi}(\boldsymbol{a}) \stackrel{(\dagger)}{\Longrightarrow} M^{*} \models B^{\Pi}(\boldsymbol{a}) \stackrel{(*)}{\Longrightarrow} M^{*} \models B(\boldsymbol{a}) \\
& M^{*} \models B(\boldsymbol{a}) \stackrel{(*)}{\Longrightarrow} M^{*} \models B^{\Sigma}(\boldsymbol{a}) \stackrel{(\dagger)}{\Longrightarrow} M \models B^{\Sigma}(\boldsymbol{a}) \Longrightarrow M \models B(\boldsymbol{a})
\end{aligned}
$$

The implications marked (*) hold since $M^{*} \vDash \Delta_{1}^{b}-C R_{i}$, and those marked (\dagger) hold by $M^{*} \preceq \Sigma_{0}^{b} M$. Hence we have shown $M^{*} \preceq \Gamma_{i} M$.

Again, let $B(x) \in \Gamma_{i}$, and $a \in M^{*}$. Then the characteristic function of B, χ_{B}, is in $T C^{0}$, and from it we can define a function f_{B} using CRN that satisfies

$$
M \models \forall x<|a|\left(\operatorname{Bit}\left(f_{B}(a), x\right)=1 \hookrightarrow \chi_{B}(x)=1\right) .
$$

Since $\chi_{B}(x)=1$ is in Γ_{i}, this formula is also in Γ_{i}, and hence it also holds in M^{*}, and furthermore

$$
M^{*} \models \forall x<|a|\left(\chi_{B}(x)=1 \leftrightarrow B(x)\right),
$$

since this formula is in Γ_{i} and holds in M. Hence $M^{*} \models C O M P_{B}$, and we have shown that $M^{*} \vDash \Delta_{1}^{b}-C R_{i+1}$.

By induction, $M^{*} \vDash \Delta_{1}^{b}-C R$ and $M^{*} \preceq_{\Gamma} M$. Finally, we show that

$$
M^{*} \models \forall x \exists y \neg A(c, x, y)
$$

which contradicts the assumption that $\Delta_{1}^{b}-C R \vdash \exists x \forall y A(a, x, y)$, and thus proves the theorem. Indeed, for $a=f_{n}\left(c, d_{1}, \ldots, d_{n-1}\right) \in M^{*}$, let $b=d_{n}$, then by construction $M \models \neg A(c, a, b)$, and since $M^{*} \preceq_{\Gamma} M$, also $M^{*} \models \neg A(c, a, b)$.

Note that the proof does not show that M^{*} satisfies the Δ_{1}^{b}-comprehension axiom, but only the Δ_{1}^{b} - $C O M P$ rule.
Corollary 2. If $S_{2}^{1}=\Delta_{1}^{b}-C R$, then $\Omega\left(T C^{0}\right)$ holds, and $R_{2}^{1}=\Delta_{1}^{b}-C R$ implies $\Omega^{*}\left(T C^{0}\right)$.
Proof. Let $R(x, y)$ be a predicate in $T C^{0}$, then $R(x, y)$ is Δ_{1}^{b} w.r.t. $\Delta_{1}^{b}-C R$, and hence also $R^{*}(x, y, z)$ and $R^{* *}(x, y, z)$ are Δ_{1}^{b} w.r.t. $\Delta_{1}^{b}-C R$. Now we have

$$
\begin{array}{ll}
S_{2}^{1} \vdash \exists y \forall z R^{*}(a, y, z) & \text { by } \Sigma_{1}^{b}-L M A X \\
R_{2}^{1} \vdash \exists y \forall z R^{* *}(a, y, z) & \text { by } \Sigma_{1}^{b}-L L M A X
\end{array}
$$

and thus if $S_{2}^{1}=\Delta_{1}^{b}-C R$, then $\Delta_{1}^{b}-C R \vdash \exists y \forall z R^{*}(a, y, z)$, and by Thm. 6 there are $k \in \mathbb{N}$ and functions $f_{1}, \ldots f_{k} \in T C^{0}$ such that

$$
R^{*}\left(a, f_{1}(a), b_{1}\right) \vee R^{*}\left(a, f_{2}\left(a, b_{1}\right), b_{2}\right) \vee \ldots \vee R^{*}\left(a, f_{k}\left(a, b_{1}, \ldots, b_{k-1}\right), b_{k}\right)
$$

i.e., principle $\Omega\left(T C^{0}\right)$ holds. By the same argument with $R^{* *}$ instead of R^{*}, if $R_{2}^{1}=\Delta_{1}^{b}-C R$ then $\Omega^{*}\left(T C^{0}\right)$ holds.
Corollary 2 together with Prop. 4 and 5 prove Thm. 3. The proof of Thm. 6 suggests some open question:

- First, is $\Delta_{1}^{b}-C R=\Delta_{1}^{b}-C R_{i}$ for some $i ?$
- For $f \in T C^{0}$, is there a relationship between the minimal i s.t. f is Σ_{1}^{b} definable in $\Delta_{1}^{b} C R_{i}$ and the nesting depth of CRN required to define f in the function algebra? Note that the proof of Thm. 4 actually shows every function in $T C^{0}$ that can be defined by i nested applications of CRN is Σ_{1}^{b}-definable in $\Delta_{1}^{b}-C R_{i}$.
- Moreover, is there a relation between either of these complexity measures and the depth of a $T C^{0}$ circuit family computing f ?

References

1. B. Allen. Arithmetizing uniform NC. Annals of Pure and Applied Logic, 53:1-50, 1991.
2. E. Allender. The permanent requires large uniform threshold circuits. To appear in Chicago Journal of Theoretical Computer Science. Preliminary Version appeared in COCOON'96, 1998.
3. D. A. M. Barrington, N. Immermann, and H. Straubing. On uniformity within NC ${ }^{1}$. Journal of Computer and System Sciences, 41:274-306, 1990.
4. S. R. Buss. Bounded Arithmetic. Bibliopolis, Napoli, 1986.
5. P. Clote. A first order theory for the parallel complexity class NC. Technical Report BCCS-89-01, Boston College, January 1989.
6. P. Clote. On polynomial size Frege proofs of certain combinatorial principles. In P. Clote and J. Krajíček, editors, Arithmetic, Proof Theory and Computational Complexity, volume 23 of Oxford Logic Guides, pages 162-184. Clarendon Press, Oxford, 1993.
7. P. Clote and G. Takeuti. First order bounded arithmetic and small boolean circuit complexity classes. In P. Clote and J. Remmel, editors, Feasible Mathematics II, pages 154-218. Birkhäuser, Boston, 1995.
8. J. Johannsen. A bounded arithmetic theory for constant depth threshold circuits. In P. Hájek, editor, GÖDEL '96, pages 224-234, 1996. Springer Lecture Notes in Logic 6.
9. J. Johannsen and C. Pollett. On proofs about threshold circuits and counting hierarchies (extended abstract). In Proc. 13th IEEE Symposium on Logic in Computer Science, pages 444-452, 1998.
10. J. Krajíček. Bounded Arithmetic, Propositional Logic and Complexity Theory. Cambridge University Press, 1995.
11. J. Krajíček, P. Pudlák, and J. Sgall. Interactive computations of optimal solutions. In B. Rovan, editor, Mathematical Foundations of Computer Science, pages 48-60. Springer, 1990.
12. J. Krajíček, P. Pudlák, and G. Takeuti. Bounded arithmetic and the polynomial hierarchy. Annals of Pure and Applied Logic, 52:143-153, 1991.
13. P. Pudlák. Some relations between subsystems of arithmetic and complexity of computations. In Y. N. Moschovakis, editor, Logic from Computer Science, pages 499-519. Springer, New York, 1992.
14. G. Takeuti. RSUV isomorphisms. In P. Clote and J. Krajíček, editors, Arithmetic, Proof Theory and Computational Complexity, volume 23 of Oxford Logic Guides, pages 364-386. Clarendon Press, Oxford, 1993.

[^0]: * Supported by DFG grant No. Jo 291/1-1

