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Abstract. The theory �

b

1

-CR of Bounded Arithmetic axiomatized by

the �

b

1

-bit-comprehension rule is de�ned and shown to be strongly re-

lated to the complexity class TC

0

. The �

b

1

-de�nable functions of �

b

1

-CR

are those in uniform TC

0

, and the �

b

2

-de�nable functions are computable

by counterexample computations using TC

0

-functions. The latter is used

to show that a collapse of stronger theories to �

b

1

-CR implies that NP

is contained in non-uniform TC

0

.

1 Introduction

The �

b

1

-bit-comprehension rule roughly states the following: Given a length n

and a predicate A(x) that has been proven to be �

b

1

, i.e., equivalent to both an

NP - (�

b

1

-) and a co-NP - (�

b

1

-) predicate, there is a number w of length n such

that for every i < n, the ith bit of w is set if and only if A(i) holds. One can

think of w as coding the set of small i such that A(i) holds.

We consider the theory of Bounded Arithmetic �

b

1

-CR that has this rule

as its main axiom. This theory is related to the computational complexity class

TC

0

of functions computable by constant-depth threshold circuits. We show that

the theory C

0

2

of [9], whose �

b

1

-de�nable functions are TC

0

, is 8�

b

1

-conservative

over �

b

1

-CR.

Theories of Bounded Arithmetic that correspond to the complexity class TC

0

have been described earlier by the authors [9, 8] as well as by Clote and Takeuti

[7]. So why do we come up with yet another one? We think there are two reasons

that make �

b

1

-CR more interesting than the previous theories for TC

0

.

First, one can argue that it is the weakest natural theory whose �

b

1

-de�nable

functions are TC

0

, as the closure of the �

b

1

-de�nable functions under concatena-

tion recursion on notation (CRN) is essentially the same as �

b

1

-comprehension.

Second, we will show that �

b

1

-CR has a tighter connection to TC

0

than the

previously considered theories: The �

b

2

-theorems of �

b

1

-CR can be witnessed

by counterexample computations (a concept introduced by [13,11] that we will

de�ne below) where the Student has the computational capabilities of TC

0

.

?

Supported by DFG grant No. Jo 291/1-1



Similar to the results of [12], this will allow us to show that a collapse of stronger

theories, S

1

2

or R

1

2

, to �

b

1

-CR implies that every NP -predicate can be decided

by non-uniform TC

0

-circuits.

2 Uniform and Non-Uniform TC

0

A threshold circuit is a circuit built up from boolean variables and their negations

by threshold gates of the form T

k

(x

1

; : : : ; x

m

), where the boolean function T

k

is

de�ned by

T

k

(x

1

; : : : ; x

m

) :=

�

1 if # f i ; x

i

= 1 g � k

0 otherwise

:

If the variables in the circuit are x

1

; : : : ; x

n

, then it computes a boolean function

f0; 1g

n

! f0; 1g. More generally, we can let it compute a function f0; 1g

n

!

f0; 1g

m

by allowing several outputs.

A boolean function f : f0; 1g

�

! f0; 1g

�

is computed by a circuit family

hC

n

;n 2 Ni if for each n, C

n

computes f j

f0;1g

n
. The non-uniform class TC

0

is

de�ned as the class of functions computable by a family of threshold circuits

of polynomial size and constant depth, i.e., there are a polynomial p(n) and a

constant d such that for all n, size(C

n

) � p(n) and depth(C

n

) � d.

Non-uniform circuit families can compute functions that are not computable.

For example, letK be an undecidable set of natural numbers, then the character-

istic function of

�

1

k

; k 2 K

	

is computable by a trivial circuit family of linear

size and depth 1. To overcome this sometimes unwanted feature, circuit families

are required to satisfy certain uniformity conditions. For TC

0

-circuits, the most

suitable uniformity notion is DLogTime-uniformity, see [3] for the somewhat

involved de�nition.

DLogTime-uniform TC

0

is a fairly natural complexity class: it is character-

ized by �rst-order logic with majority quanti�ers on ordered �nite models [3] in

Descriptive Complexity Theory, or by acceptance in polynomial time on so-called

Threshold Turing Machines [2], or by the machine-independent characterization

below, which is most convenient for our purposes. Whenever we speak of TC

0

in

the following without further quali�cation, we mean DLogTime-uniform TC

0

.

For a complexity class C, the class C=poly is de�ned as follows: A predicate

A(x) is in C=poly if there is a predicate B(x; y) 2 C and a polynomially bounded

advice function, i.e., a function f such that jf(n)j � p(n) for some polynomial

p(n), and for which it holds that

8x A(x) $ B(x; f(jxj)) :

Advice functions are used to inject non-uniformity into uniform complexity

classes. For example, it is well-known that P=poly is equal to the class of pred-

icates computable by non-uniform circuits of polynomial size. Analogously we

have the following:

Proposition 1. TC

0

=poly is the same as non-uniform TC

0

.



Proof (Sketch). For each d, there is an interpreter in TC

0

that takes as inputs

a threshold circuit C of depth d and an input a to C, and outputs the value

computed by C on input a. Let a non-uniform threshold circuit family hC

n

;n 2

Ni of depth d and size O(p(n)) computingA(x) be given. Then A(x) 2 TC

0

=poly

is seen as follows: B(x; y) is the interpreter for threshold circuits of depth d,

and the advice f(n) is an encoding of the circuit C

n

. Obviously B(x; f(jxj)) is

equivalent to A(x).

On the other hand, let A(x) 2 TC

0

=poly given by predicate B(x; y) and

advice function f . Then a circuit computing A(x) for inputs x of length n is

constructed from the circuit computing B(x; y) for inputs x of length n and y

of length jf(n)j, by plugging into y constant subcircuits computing the bits of

f(n). ut

Next we give the machine-independent characterization of TC

0

mentioned

above:

De�nition 1. Suppose h

0

(n;x), h

1

(n;x) � 1. A function f is de�ned by con-

catenation recursion on notation (CRN) from g, h

0

, and h

1

if

f(0;x) = g(x)

f(2n;x) = 2 � f(n;x) + h

0

(n;x); provided n 6= 0

f(2n + 1;x) = 2 � f(n;x) + h

1

(n;x)

Let i

n

k

(x

1

; : : :x

n

) := x

k

, s

0

(x) := 2x, s

1

(x) = 2x + 1, jxj := dlog

2

(x+ 1)e,

x#y := 2

jxj�jyj

and Bit(x; i) := b

x

2

i

c mod 2. The following characterization of

the number-theoretic functions in TC

0

was given in [7]:

Proposition 2. The class TC

0

is the smallest class of functions that contains

0, i

n

k

, s

0

, s

1

, multiplication �, #, jxj, Bit and which is closed under composition

and CRN.

3 Theories of Bounded Arithmetic

We briey review the necessary background on Bounded Arithmetic, for more

information see [4] or [10]. The language L

2

of Bounded Arithmetic comprises

the usual signature of arithmetic 0; S;+;

:

; �;�, together with function symbols

for b

1

2

xc, MSP (x; i) := bx=2

i

c, jxj and #.

A quanti�er of the form 8x� t , 9x� t with x not occurring in t is called a

bounded quanti�er. Furthermore, the quanti�er is called sharply bounded if the

bounding term t is of the form jsj for some term s. A formula is called (sharply)

bounded if all quanti�ers in it are (sharply) bounded.

We denote the class of quanti�er-free formulas in L

2

by open. The class of

sharply bounded formulas is denoted �

b

0

or �

b

0

. For i 2 N, �

b

i+1

(resp. �

b

i+1

) is

the least class containing �

b

i

(resp. �

b

i

) and closed under conjunction, disjunc-

tion, sharply bounded quanti�cation and bounded existential (resp. universal)

quanti�cation.



We say that a function f(x) is �

b

i

-de�nable in a theory T if there is a �

b

i

-

formula A(x; y) and a term t(x) such that

N j= 8x A(x; f(x))

T ` 8x 9y� t(x)A(x; y)

T ` 8x; y; z A(x; y) ^ A(x; z) ! y = z :

BASIC denotes a set of quanti�er-free axioms specifying the interpretations

of the function symbols of L

2

. It can most conveniently be taken as the set

BASIC from [4] together with the axioms for MSP and

:

from [14].

For a class of formulas �, the axiom schema �-LIND is

A(0) ^ 8x (A(x)! A(Sx)) ! 8x A(jxj)

for each A(x) 2 �, and �-LLIND is

A(0) ^ 8x (A(x) ! A(Sx)) ! 8x A(jjxjj)

for A(x) 2 �. In general, for m � 1, �-L

m

IND is

A(0) ^ 8x (A(x) ! A(Sx)) ! 8x A(jxj

m

)

for A(x) 2 �, where jxj

1

:= jxj and jxj

m+1

:= j jxj

m

j.

The theory S

i

2

is the theory axiomatized by the BASIC axioms and �

b

i

-

LIND, and R

i

2

is the theory given by BASIC and �

b

i

-LLIND.

De�nition 2. Given a term t 2 L

2

we de�ne a monotonic L

2

-term t

�

as follows:

If t is constant or a variable, then t = t

�

. If t is f(s), where f is a unary function

symbol, then t

�

is f(s

�

). If t is s

1

� s

2

for � a binary operation other than

:

or

MSP , then t

�

is s

�

1

� s

�

2

. Lastly, if t is s

1

:

s

2

or MSP (s

1

; s

2

), then t

�

is s

�

1

.

It is easily proved in BASIC + open-LIND that t

�

is monotonic, and t � t

�

.

The following terms will be used frequently below. Let

2

jxj

:= 1#x

mod2(x) := x

:

2 � b

1

2

xc

Bit(x; i) := mod2(MSP (x; i))

2

min(x;jyj)

:=MSP (2

jyj

; jyj

:

x)

LSP (x; i) := x

:

2

min(i;jxj)

�MSP (x; i)

�

a

(w; i) :=MSP (LSP (w; Si � jaj); i � jaj)

so that LSP (x; jyj) returns the number consisting of the last jyj bits of x, and

if w codes a sequence hb

1

; : : : ; b

`

i with jb

i

j � jaj for all i, then �

a

(w; i) = b

i

.

The code for this sequence is simply the number w whose binary representation

consists of a 1 followed by the binary representations of the b

i

concatenated,



each padded with zeroes to be of exact length jaj. If we set bd(a; s) := 2(2a#2s),

then bd(a; s) is thus a bound on the code for a sequence of length jsj with each

item bounded by a.

We also de�ne a pairing operation that does not rely on an explicitly men-

tioned bound. Let B = 2

jmax(x;y)j

. Pairs are coded as hx; yi := (B + y) �

2B + (B + x). The terms (w)

1

:= �

b

1

2

jwjc

:

1

(0; �

b

1

2

jwjc

(0; w)) and (w)

2

:=

�

b

1

2

jwjc

:

1

(0; �

b

1

2

jwjc

(1; w)), project out the left and right coordinates from an

ordered pair. To check if w is a pair we use the formula

ispair(w) := Bit(w; b

1

2

jwjc

:

1) = 1 ^ 2 � jmax((w)

1

; (w)

2

)j+ 2 = jwj :

For a class of formulas �, the replacement scheme BB� is

8x�jsj 9y� t(x) A(x; y) !

9w<bd(t

�

(jsj); s) 8x�jsj �

t

�

(jsj)

(w; x) � t(x) ^ A(x; �

t�(jsj)

(w; x))

for each A(x; y) 2 �.

The theory C

0

2

is de�ned as BASIC + open-LIND + BB�

b

0

. The follow-

ing theorem summarizes some relations between �

b

i

-de�nability in the theories

de�ned and computational complexity.

Theorem 1. { The �

b

i

-de�nable functions in S

i

2

are exactly those in FP

�

P

i�1

,

for each i � 1 [4].

{ The �

b

1

-de�nable functions in R

1

2

are exactly those in NC [1, 5].

{ The �

b

1

-de�nable functions in C

0

2

are exactly those in TC

0

[8, 9].

The comprehension axiom for formula A(x), denoted COMP

A

(a), is the

formula

9y<2

jaj

8x< jaj

�

Bit(y; x) = 1 $ A(x)

�

:

The �

b

1

-comprehension rule, �

b

1

-COMP , is the following inference rule

A(x) $ B(x)

COMP

A

(t)

;

where A(x) is �

b

1

and B(x) is �

b

1

, and t is an arbitrary L

2

-term. Note that this

rule is di�erent from the possibly stronger �

b

1

-comprehension axiom

8x

�

A(x) $ B(x)

�

! COMP

A

(a) ;

thus it is essential that in a sequent calculus context, the rule must not have any

side formulas.

De�nition 3. Let �

b

1

-CR be the theory axiomatized by BASIC, open-LIND

and the �

b

1

-COMP rule.

In [9], it is proved that C

0

2

proves the �

b

1

-COMP axiom, therefore �

b

1

-CR is a

subtheory of C

0

2

. But we will show that C

0

2

is not much stronger:



Theorem 2. C

0

2

is 8�

b

1

-conservative over �

b

1

-CR.

This implies immediately:

Corollary 1. The �

b

1

-de�nable functions of �

b

1

-CR are precisely TC

0

.

Hence S

1

2

= �

b

1

-CR implies P = TC

0

, and R

1

2

= �

b

1

-CR implies NC = TC

0

.

We will show that the connection between the theory �

b

1

-CR and TC

0

is still

tighter: the �

b

2

-theorems of �

b

1

-CR can be witnessed by a type of interactive

TC

0

-computations to be de�ned below. This will allow us to show that the

equality of �

b

1

-CR to either of the stronger theories S

1

2

or R

1

2

implies a further

collapse of complexity classes:

Theorem 3. If S

1

2

= �

b

1

-CR or R

1

2

= �

b

1

-CR, then NP is contained in non-

uniform TC

0

.

The method could further be generalized to show that NP � non-uniform TC

0

follows from �

b

1

-CR ` �

b

1

-L

m

IND for any m > 0.

The following further axiom schemes will be used below. The �

b

1

-length-

maximization scheme, �

b

1

-LMAX, is the axiom

9x�a A(x) ! 9x�a

�

A(x) ^ 8y�a

�

jyj > jxj ! :A(y)

��

for every �

b

1

-formulaA(x). Similarly, the �

b

1

-double-length-maximization scheme,

�

b

1

-LLMAX, is the axiom

9x�a A(x) ! 9x�a

�

A(x) ^ 8y�a

�

jjyjj > jjxjj ! :A(y)

��

for every �

b

1

-formula A(x). The following proposition is well-known.

Proposition 3. S

1

2

` �

b

1

-LMAX and R

1

2

` �

b

1

-LLMAX. In fact, �

b

1

-LMAX

is equivalent to �

b

1

-LIND and �

b

1

-LLMAX is equivalent to �

b

1

-LLIND over

BASIC + open-LIND.

4 Proof of Conservativity

The following two lemmas are well-known and easily proved by the method of

[6]:

Lemma 1. The �

b

0

-predicates are computable in TC

0

. In particular, the L

2

-base

functions are in TC

0

.

Lemma 2. Let f be a function in TC

0

. Then the function

�j< jxj (f(j; x) = 0)

is also in TC

0

.

Lemma 3. bjaj=jbjc is contained in TC

0

.



Proof. By Lemma 2 and Lemma 1 we can de�ne

bjaj=jbjc := �n�jaj (jaj < (n+ 1)jbj) :

Suppose g(n;x) � t(x) and s; t are L

2

-terms. Then a length-sum is a sum of

the form

jsj

X

n=0

g(n;x) � 2

n�jt

�

j

:

Lemma 4. TC

0

is closed under length-sums.

Proof. Suppose we want to de�ne the length-sum

f(a; x) :=

jaj

X

n=0

h(n; x)2

njs

�

(x)j

using CRN where h(n; x) � s(x) are functions in TC

0

. We use CRN to compute

the bits of f from the most signi�cant bit to the least signi�cant bit. The function

t(i; a; x) := jaj

:

bjij=js

�

(x)jc

allows us to determine which term in f we are computing the bits from. The

function

p(i; x) := js

�

(x)j

:

(jij

:

bjij=js

�

(x)jcjs

�

(x)j)

:

1

gives us the position within a term. De�ne the function f

0

by CRN in the fol-

lowing way:

f

0

(0; a; x) = Bit(p(0; x); h(t(0; a; x); x))

f

0

(2i+ 1; a; x) = f

0

(2i; a; x) = 2f

0

(i; a; x) +Bit(p(i; x); h(t(i; a; x); x)):

Then the desired f(a; x) is f

0

(2

jajjs

�

(x)j+jh(jaj;x)j

:

2

; a; x). The expression in the

�rst component of f

0

is easily de�ned using �, #, and MSP . ut

Lemma 5. �

b

1

-CR proves the �

b

1

-LIND axioms, and �

b

1

-CR proves the bit-

extensionality axiom:

jaj = jbj ^ 8i< jaj

�

Bit(a; i) = Bit(b; i)

�

! a = b :

Proof. If A is �

b

1

in �

b

1

-CR, then �

b

1

-CR proves the LIND axiom for A since

�

b

1

-CR proves COMP

A

(a) and �

b

1

-CR proves LIND on x for the formula

Bit(y; x) = 1. The second statement is easily proved by LIND on x in the

following �

b

0

-formula:

8i< jaj

�

i � x! Bit(a; i) = Bit(b; i)

�

! LSP (a; x) = LSP (b; x) :

We are now ready to show the functions in TC

0

are �

b

1

-de�nable in �

b

1

-CR.



Theorem 4. �

b

1

-CR can �

b

1

-de�ne the functions in TC

0

.

Proof. The base functions symbols are obviously �

b

1

-de�nable in �

b

1

-CR, and

closure under composition is straightforward. So it su�ces to show the �

b

1

-

de�nable functions of �

b

1

-CR are closed under CRN.

Suppose that f is de�ned by CRN from g(x) and h

0

(n; x); h

1

(n; x), where

g; h

0

; h

1

are �

b

1

-de�ned in �

b

1

-CR. De�ne t(a; x) to be

jaj

X

n=0

cond(Bit(jaj

:

n; a); h

0

(n; x); h

1

(n; x)) � 2

n

;

then f(a; x) = g(x) � 2

jt(a;x)j

+ t(a; x). It su�ces to show the length-sum t(a; x)

is �

b

1

-de�nable, since then f(a; x) will be by composition.

Notice k(n; x; a) := cond(Bit(jaj

:

n; a); h

0

(n; x); h

1

(n; x)) is �

b

1

-de�ned in

�

b

1

-CR. Let A

k

(n; a; x; y) be its de�ning formula. Given the other parameters,

�

b

1

-CR proves the value y is unique and bounded by 1. Therefore �

b

1

-CR

` A

k

(n; x; a; 1) $ :A

k

(n; x; a; 0) and A

k

(n; x; a; 1) is true i� k(n; x; a) = 1

so k(n; x; a) = 1 is a �

b

1

-property in �

b

1

-CR. We want to de�ne the sum

P

jaj�1

n=0

k(n; x; a) � 2

n

. �

b

1

-COMP on k(n; x; a) = 1 implies

(9w � s)(8n � jaj)(Bit(n;w) = 1 $ k(n; x; a) = 1) ;

the value w is the desired sum and it can be proven unique using extensionality.

ut

Remark 1. Given two �

b

1

-de�ned in �

b

1

-CR functions f ,g, the property f(x) =

g(x) will be �

b

1

in �

b

1

-CR. Using this, �

b

1

-LIND, and extensionality it is not

hard to show �

b

1

-CR proves simple properties of both the �-operation and

length-sums. For instance, �

b

1

-CR proves that if h(n; x) � s(x) then

�

js

�

j

(j;

jaj

X

n=0

h(n; x)2

njs

�

(x)j

) = h(j; x)

for j � jaj.

To prove the conservativity result, we formalize the witnessing proof for C

0

2

in �

b

1

-CR. First we de�ne a witness bounding term and witness predicate for

�

b

1

-formulas as follows:

{ If A(a) 2 �

b

0

then t

A

= 0 and Wit

A

(w;a) := A(a) ^ w = 0.

{ If A(a) is of the form B �C where � is ^ or _ then t

A

:= 4 � (2

jmax(t

B

;t

C

)j

)

2

and

Wit

A

(w;a) := ispair(w) ^ (Wit

B

((w)

1

;a) �Wit

C

((w)

2

;a))

{ If A(a) is of the form 9x� t B(x;a) where B(x;a) 2 �

b

0

then t

A

:= t and

Wit

A

(w;a) := w � t ^ B(w;a) :



{ If A(a) is of the form 9x� t B(x;a) where B(x;a) 2 �

b

1

n �

b

0

, then t

A

:=

4 � (2

jmax(t;t

B

)j

)

2

and

Wit

A

(w;a) := ispair(w) ^ (w)

1

� t ^Wit

B

((w)

2

; (w)

1

;a) :

{ If A(a) is of the form 8x�jsjB(x;a) where B(x;a) 2 �

b

1

n�

b

0

, then t

A

:=

bd(t

�

B

(jsj); s) and

Wit

A

(w;a) := w � t

A

^ 8x�jsjWit

B

(�

t

A

(x;w); x;a)) :

The following lemma is true for this witness predicate:

Lemma 6. If A(a) 2 �

b

1

, then:

(a) Wit

A

is a �

b

0

-predicate.

(b) �

b

1

-CR ` 9w� t

A

(a)Wit

A

(w;a) ! A(a).

Proof. Part (a) follows from the de�nition of witness and since � and the pairing

functions are de�ned by L

2

-terms. Part (b) is easily proved by induction on the

complexity of A. ut

To prove the witnessing theorem, we formalizeC

0

2

in a sequent calculus LKB

that has special rules for the introduction of bounded quanti�ers (see [4]). In

this formalization, open-LIND and BB�

b

0

are given as inference rules, which

are shown in the proof below.

Theorem 5. Suppose

C

0

2

` � =) �

where � and � are cedents of �

b

1

-formulas. Let a be the free variables in this

sequent. Then there is a TC

0

function f which is �

b

1

-de�ned in �

b

1

-CR such

that:

�

b

1

-CR ` Wit

V

�

(w;a) !Wit

W

�

(f(w;a);a):

Proof. This is proved by induction on the number of sequents in a C

0

2

proof of

� =) �. By cut elimination, we can assume all the sequents in the proof are

�

b

1

. Most of the cases are similar to previous witnessing arguments so we only

show the (8 : right) case, open-LIND case and the BB�

b

0

case.

(8:right case) Suppose we have the inference:

b � t; � =) A(b);�

� =) 8x� t A(x);�

By the induction hypothesis there is a TC

0

function g such that

�

b

1

-CR ` Wit

b�t ^

V

�

(w;a; b)!Wit

A _

W

�

(g(w;a; b);a; b) :

By cut-elimination, 8x� tA(x) is a �

b

1

-formula, so t must be of the form t = jsj.

There are two case: where A is �

b

0

and where A is �

b

1

n�

b

0

. In the �rst case, let

y be �i�jsj :A(i) and de�ne f to be g(h0; wi;a; y). The 0 in the ordered pair is



since Wit

b�t

(w; b) = b � t ^ w = 0. This is in TC

0

by Lemma 1 and Lemma 2

and it is not hard to show that

�

b

1

-CR ` Wit

�

(w;a)!Wit

8x�jsj A _

W

�

(f(w;a);a) :

In the second case, since Wit

A

is a �

b

0

-formula, its characteristic function �

Wit

A

is in TC

0

. Let k be the function

k(w;a) = �j�jsj [:Wit

A

((g(h0; wi;a; j))

1

;a; j)] :

Let t

0

:= (t

A

(t))

�

where t

A(x)

is from Lemma 6. Now de�ne f(w;a) from k as

follows

f(w;a) =

�

h

P

jsj

j=0

(g(h0; wi;a; j))

1

� 2

j�jt

0

j

; 0i if k(w;a) = jsj+ 1

h0; (g(h0; wi;a; k(w;a)))

2

i otherwise

;

then using the remark after Theorem 4

�

b

1

-CR ` Wit

�

(w;a)!Wit

8x�jsj A _

W

�

(f(w;a);a) :

(open-LIND case) Suppose we have the inference

A(b); � =) A(Sb);�

A(0); � =) A(jsj);�

where A is an open formula and s is a term in L

2

. By the induction hypothesis

there is a TC

0

function g such that

�

b

1

-CR ` Wit

A(b) ^

V

�

(w; b;a) !Wit

A(Sb) _

W

�

(g(w; b;a); b;a):

From our de�nition of the Wit predicate and Lemma 1, we know TC

0

contains

the predicate Wit

W

�

. De�ne

f(w;a) := g(w; (�y< jsj )(:Wit

W

�

((g(w; y;a)))

2

; y;a));a):

Notice Wit

A

(v; b;a) := A ^ v = 0 as A is open, so the value of a witness to A

does not depend on b. So it will witness A(b) for all b � jsj. Using this, the idea

is f(w;a) runs g on the least value y less than jsj that produces a witness for

�. If no such value exists then it must be the case that A(jsj) holds and so, as

A is open, the cedent is trivially witnessed. From this it is not hard to show:

�

b

1

-CR ` Wit

A(0) ^

V

�

(w;a) !Wit

A(jsj) _

W

�

(f(w;a);a):

(BB�

b

0

:case) Suppose we have the inference:

� =) 8x�jsj 9y� t A(x; y);�

� =) 9v�bd(t

�

(jsj); s) 8x�jsj (�

t

�

(jsj)

(x; v) � t ^ A(x; �

t

�

(jsj)

(x; v)));�

where s; t are terms in L

2

and A(x; y) 2 �

b

0

. By the induction hypothesis there

is a TC

0

function g such that

�

b

1

-CR ` Wit

V

�

(w;a; b)!Wit

8x�jsj9y�tA _

W

�

(g(w;a);a) :



For this case, it su�ces to notice that the predicates

Wit

8x�jsj9y�tA

and

Wit

9v�bd(t

�

(jsj);s)8x�jsj (�

t

�

(s(jxj))

(x;v)�t ^A)

are the same. Hence, if we let f = g then

�

b

1

-CR ` Wit

V

�

(w;a; b)!Wit

9w�bd(t

�

;s)8x�jsjA _

W

�

(f(w;a);a):

This completes the cases and the proof. ut

Now Thm. 2 follows from this witnessing theorem as follows: Suppose C

0

2

proves a �

b

1

-formulaA(x). Then by Theorem 5, taking � to be the empty cedent,

�

b

1

-CR ` Wit

A

(g(x);x), where g is a TC

0

function. By Lemma 6, we have

�

b

1

-CR ` A(x). ut

5 Counterexample Computations with TC

0

functions

In this section we view binary relations R(x; y) in TC

0

as optimization prob-

lems: given x, the task is to �nd a solution y of maximal length jyj � jxj such

that R(x; y) holds. We consider a particular way of solving such optimization

problems, viz. counterexample computations as introduced implicitly in [12] and

made explicit in [13, 11].

A counterexample computation is performed by two agents: Student, who

has limited computational power, and Teacher who has unlimited knowledge.

In order to �nd a maximal solution, Student can ask questions of the form \Is

y a maximal solution?", to which Teacher can either reply \yes" or provide a

counterexample, i.e., a better solution.

There are two natural measures of complexity for counterexample computa-

tions: the computational power of Student, and the number of counterexamples.

Note that every optimization problem can be solved withO(jxj) many counterex-

amples by the trivial Student, who just repeats each counterexample provided

as his next question.

Here we are interested in the case where Student has the computational

capabilities of TC

0

and the number of counterexamples is bounded by a constant.

We will show that the hypothesis that every optimization problem in TC

0

can

be computed in this way, formalized by principle 
(TC

0

) below, implies that

every NP predicate is computable by non-uniform TC

0

circuits.

For an optimization problem R(x; y) let R

�

(x; y; z) be de�ned by

jyj � jxj ^

�

y > 0! R(x; y)

�

^

�

jyj < jzj � jxj ! :R(x; z)

�

;

so that 8z R

�

(x; y; z) expresses that y = 0 or y is a maximal solution.

Principle 
(TC

0

): for every predicate R(x; y) 2 TC

0

there are k 2 N and

functions f

1

; : : : f

k

2 TC

0

, such that



Either 8z R

�

(a; f

1

(a); z) or if b

1

is such that :R

�

(a; f

1

(a); b

1

),

then either 8z R

�

(a; f

2

(a; b

1

); z) or if b

2

is such that :R

�

(a; f

2

(a; b

1

); b

2

),

.

.

.

then 8z R

�

(a; f

k

(a; b

1

; : : : ; b

k�1

); z).

Proposition 4. 
(TC

0

) implies NP � non-uniform TC

0

.

Proof. Let A be NP -complete under TC

0

-reductions, and be given by x 2 A $

9w� x B(x;w) with B 2 TC

0

. We say that w witnesses x if w � x ^ B(x;w)

holds.

We will construct an advice function h with jh(n)j � n

O(1)

and g 2 TC

0

such that g(x; h(jxj)) witnesses x for all x 2 A, i.e.,

x 2 A i� B(x; g(x; h(jxj))) ; (1)

and hence A 2 TC

0

=poly, assuming 
(TC

0

).

Let the relation R(a; b) be de�ned by

a and b code sequences, and length(a) � length(b)

and for all i � length(b) : (b)

i

witnesses (a)

i

:

Obviously R 2 TC

0

, so by 
(TC

0

) there are functions f

1

; : : : ; f

k

that for a

sequence a =




x

1

; : : : ; x

m

�

interactively compute a maximal sequence b of wit-

nesses for an initial segment of a.

For a �xed length n, let V

1

:= fx 2 A ; jxj = n g, and for each x 2 V

1

, let

w(x) be a canonical witness. Algorithm W below computes a pair hj; wi from

an input a =




x

1

; : : : ; x

k

�

2 V

k

1

such that w witnesses x

j

. Since there is a

y := f

1

(a)

if length(y) � 1 and R(a; y) then

output h1; (y)

1

i

stop

fi

for j from 2 to k do

y := f

j

(a; b

1

; : : : ; b

j�1

)

if length(y) � j and R(a; y) then

output hj; (y)

j

i

stop

fi

od

Algorithm W. b

j

is de�ned as




w(x

1

); : : : ; w(x

j

)

�

.

sequence of witnesses b

0

=




w(x

1

); : : : ; w(x

k

)

�

of length k, a length maximal b

with R(a; b) has to be of length k. By our assumption of 
(TC

0

), such a length



maximal b is computed by one of the f

j

(a; b

1

; : : : ; b

j�1

), so Algorithm W halts

at one of the stop instructions for every a 2 V

k

1

.

For a set Q � V

1

with jQj = k � 1 and v 2 V

1

nQ we de�ne Q helps v if for

some ordering a :=




x

1

; : : : ; x

j�1

; v; x

j+1

; : : : ; x

k

�

of Q [ fvg, Algorithm W on

input a outputs a pair hj; wi such that w witnesses v.

As there is only a constant number k! of orderings of Q [ fvg, there is a

function in TC

0

that, given Q, v and canonical witnesses for the elements of Q,

uses Algorithm W to decide whether Q helps v, and if so computes a witness

w(Q; v) for v.

There are at least

�

jV

1

j

k

�

pairs hQ; vi such that Q helps v, but there are only

�

jV

1

j

k�1

�

possible sets Q of size k � 1. Hence there is a set Q

1

� V

1

such that Q

1

helps at least

jV

1

j�k+1

k

di�erent elements of V

1

.

Inductively we de�ne V

i+1

:= f v 2 V

i

; Q

i

does not help v g, and by the

same argument as above, if jV

i+1

j > k then there is a set Q

i+1

� V

i+1

that

helps at least

jV

i+1

j�k+1

k

elements of V

i+1

nQ

i+1

.

Let t be the least j such that jV

j

j � k, then since jV

i+1

j <

�

k�1

k

�

i

jV

1

j + k

we get t = dlog

k=(k�1)

jV

1

je = O(n). For i < t let S

i

be the sequence of pairs

hx;w(x)i for x 2 Q

i

, and let S

t

be the sequence of pairs hx;w(x)i for x 2 V

t

.

Finally, let the advice h(n) be S :=




S

1

; : : : ; S

t

�

. Note that jSj = O(kn

2

).

Finally, Algorithm G computes a witness for v 2 V

1

from inputs v and S.

By the remark above, lines 5{6 of Algorithm G can be implemented in TC

0

,

if v occurs in S then

output w(v) (� also occurs in S next to v �)

else

for j 2 f1; : : : ; t� 1g do in parallel

if Q

j

helps v then

w

j

:= w(Q

j

; v)

od

output w

j

with j < t minimal

fi

Algorithm G.

and hence the function g computed by Algorithm G is in TC

0

. By construction

g(x; h(jxj)) witnesses x i� there is a witness for x, hence the equivalence (1)

holds. ut

We now consider a variant where the measure to be maximized is jjyjj instead

of jyj. Principle 


�

(TC

0

) is thus exactly the same as 
(TC

0

), only with the

relation R

�

(x; y; z) replaced by R

��

(x; y; z), which is de�ned as

jjyjj � jjxjj ^

�

y > 0! R(x; y)

�

^

�

jjyjj < jjzjj � jjxjj ! :R(x; z)

�

:

Proposition 5. 


�

(TC

0

) implies NP � non-uniform TC

0

.



Proof. Modify the proof of Prop. 4 as follows: Let ` := 2

k�1

. Algorithm W is

replaced by Algorithm W

�

, which gets input a =




x

1

; : : : ; x

`

�

2 V

`

1

. Now again

y := f

1

(a)

if length(y) � 1 and R(a; y) then

output h1; (y)

1

i

stop

fi

for j from 2 to k do

y := f

j

(a; b

1

; : : : ; b

j�1

)

if length(y) � 2

j�1

and R(a; y) then

w :=




(y)

2

j�2

+1

; : : : ; (y)

2

j�1

�

output hj;wi

stop

fi

od

Algorithm W

�

. b

j

is de�ned as




w(x

1

); : : : ; w(x

2

j�1
)

�

.

there is a sequence of witnesses b

0

=




w(x

1

); : : : ; w(x

`

)

�

of length `, and hence

jb

0

j = n`, so jjb

0

jj = k+ jnj. Hence any sequence b with R(a; b) and jjbjjmaximal

has to be of length `, and by the assumption 


�

(TC

0

), such a maximal b is

found by one of the f

j

(a; b

1

; : : : ; b

j�1

).

For Q � V

1

with jQj = ` � 1 and v 2 V

1

n Q, de�ne Q helps v if for some

ordering a :=




x

1

; : : : ; x

m�1

; v; x

m+1

; : : : ; x

`

�

of Q [ fvg, Algorithm W

�

on

input a outputs a pair hj; wi such that either j = m = 1 and w witnesses v,

or 2

j�2

< m � 2

j�1

and w is a sequence of length 2

j�2

such that (w)

m�2

j�2

witnesses v.

The de�nition of the advice S is as before, only with k replaced by ` every-

where. So Algorithm G on input v and S will still output a witness for v if there

is one. ut

6 KPT witnessing for �

b

1

-CR

In [12] it was shown that the 98�

b

i+1

-theorems of T

i

2

can be witnessed by coun-

terexample computations using FP

�

P

i

-functions and constantly many coun-

terexamples. For this to be true for i = 0, T

0

2

needs to be de�ned as having

function symbols for all functions in FP .

Analogously, we now show that the 98�

b

1

-theorems of �

b

1

-CR can be wit-

nessed by counterexample computations using TC

0

-functions and constantly

many counterexamples. This will be the main tool for proving Thm. 3, but the

witnessing theorem and its proof might be of independent interest.

Theorem 6. Assume �

b

1

-CR ` 9x 8y A(a; x; y) , where A is �

b

1

w.r.t. �

b

1

-CR.

Then there are k 2 N and functions f

1

; : : : ; f

k

2 TC

0

, that are �

b

1

-de�nable in



�

b

1

-CR, s.t. �

b

1

-CR proves

A(a; f

1

(a); b

1

) _A(a; f

2

(a; b

1

); b

2

) _ : : : _ A(a; f

k

(a; b

1

; : : : ; b

k�1

); b

k

) :

Proof. Let f f

n

; n � 1 g be an enumeration of all functions in TC

0

s.t. f

n

is n-ary

and every function in TC

0

occurs in the list in�nitely often (possibly with dummy

arguments). Assume that A is �

b

1

w.r.t. �

b

1

-CR and �

b

1

-CR ` 9x 8y A(a; x; y),

but the conclusion of the theorem does not hold. Then by compactness there is

a model

M j= �

b

1

-CR+ f:A(c; f

1

(c); d

1

); : : : ;:A(c; f

n

(c; d

1

; : : : ; d

n�1

); d

n

); : : :g

for new constants c; d

1

; d

2

; : : :

De�neM

�

:= ff

1

(c); f

2

(c; d

1

); : : : ; f

n

(c; d

1

; : : : ; d

n�1

); : : :g. By the construc-

tion of the enumeration f

n

, N[ fc; d

1

; d

2

; : : :g � M

�

, and M

�

is closed under

all functions in TC

0

.

We �rst showM

�

�

�

b

0

M , i.e., for every �

b

0

-formulaB(x) and all parameters

a 2M

�

,

M j= B(a) i� M

�

j= B(a) :

This is proved by induction on the complexity of B(x). The only interesting case

is to show that for B(x) = 9y�jt(x)jA(x; y), M j= B(a) implies M

�

j= B(a).

Consider the function f(x) = �y�jt(x)jA(x; y). This function is in TC

0

, hence

f(a) 2M

�

, and ifM j= B(a), thenM j= A(a; f(a)), thereforeM

�

j= A(a; f(a))

holds by the induction hypothesis.

Hence if A(x) is �

b

1

and B(x) is �

b

1

and a 2 M

�

, then M j= A(a) implies

M

�

j= A(a) and M

�

j= B(a) impliesM j= B(a).

Let �

b

1

-CR

0

denote BASIC+open-LIND, and inductively de�ne �

b

1

-CR

i+1

to be the closure of �

b

1

-CR

i

under unnested applications of �

b

1

-COMP , and

�

i

to be the set of formulas that are �

b

1

w.r.t. �

b

1

-CR

i

. Hence �

b

1

-CR

i+1

is

axiomatized by all theorems of �

b

1

-CR

i

and the axioms COMP

A

for all formulas

A 2 �

i

, �

b

1

-CR =

S

i

�

b

1

-CR

i

and the set of formulas that are �

b

1

w.r.t. �

b

1

-CR

is � :=

S

i

�

i

.

We shall show by simultaneous induction that for all i, M

�

j= �

b

1

-CR

i

and

M

�

�

�

i

M . Obviously M

�

j= BASIC. Now let M

�

j= B(0) ^ :B(jaj) for some

open formula B(x) and a 2 M

�

. Then also M j= B(0) ^ :B(jaj), hence there

is a least b 2 M such that M j= b < jaj ^ B(b) ^ :B(b + 1). Since the function

f(x) := �y< jxj:B(y+1) is in TC

0

, f(a) = b 2M

�

, andM

�

j= B(b)^:B(b+1).

This shows M

�

j= open-LIND and thus M

�

j= �

b

1

-CR

0

.

Now assume that M

�

j= �

b

1

-CR

i

, and let B(x) 2 �

i

. This means there are a

�

b

1

-formula B

�

(x) and a �

b

1

-formula B

�

(x) such that

�

b

1

-CR

i

` B

�

(x) $ B(x) $ B

�

(x) :

Let a 2M

�

, then we have

M j= B(a) =) M j= B

�

(a)

(y)

=) M

�

j= B

�

(a)

(�)

=) M

�

j= B(a)

M

�

j= B(a)

(�)

=) M

�

j= B

�

(a)

(y)

=) M j= B

�

(a) =) M j= B(a)



The implications marked (�) hold since M

�

j= �

b

1

-CR

i

, and those marked (y)

hold by M

�

�

�

b

0

M . Hence we have shown M

�

�

�

i

M .

Again, let B(x) 2 �

i

, and a 2 M

�

. Then the characteristic function of B,

�

B

, is in TC

0

, and from it we can de�ne a function f

B

using CRN that satis�es

M j= 8x< jaj

�

Bit(f

B

(a); x) = 1 $ �

B

(x) = 1

�

:

Since �

B

(x) = 1 is in �

i

, this formula is also in �

i

, and hence it also holds in

M

�

, and furthermore

M

�

j= 8x< jaj

�

�

B

(x) = 1 $ B(x)

�

;

since this formula is in �

i

and holds in M . Hence M

�

j= COMP

B

, and we have

shown that M

�

j= �

b

1

-CR

i+1

.

By induction, M

�

j= �

b

1

-CR and M

�

�

�

M . Finally, we show that

M

�

j= 8x 9y :A(c; x; y) ;

which contradicts the assumption that�

b

1

-CR ` 9x8yA(a; x; y), and thus proves

the theorem. Indeed, for a = f

n

(c; d

1

; : : : ; d

n�1

) 2 M

�

, let b = d

n

, then by

construction M j= :A(c; a; b), and since M

�

�

�

M , also M

�

j= :A(c; a; b). ut

Note that the proof does not show that M

�

satis�es the �

b

1

-comprehension

axiom, but only the �

b

1

-COMP rule.

Corollary 2. If S

1

2

= �

b

1

-CR, then 
(TC

0

) holds, and R

1

2

= �

b

1

-CR implies




�

(TC

0

).

Proof. Let R(x; y) be a predicate in TC

0

, then R(x; y) is �

b

1

w.r.t. �

b

1

-CR, and

hence also R

�

(x; y; z) and R

��

(x; y; z) are �

b

1

w.r.t. �

b

1

-CR. Now we have

S

1

2

` 9y 8z R

�

(a; y; z) by �

b

1

-LMAX

R

1

2

` 9y 8z R

��

(a; y; z) by �

b

1

-LLMAX

and thus if S

1

2

= �

b

1

-CR, then �

b

1

-CR ` 9y 8z R

�

(a; y; z), and by Thm. 6 there

are k 2 N and functions f

1

; : : : f

k

2 TC

0

such that

R

�

(a; f

1

(a); b

1

) _R

�

(a; f

2

(a; b

1

); b

2

) _ : : : _ R

�

(a; f

k

(a; b

1

; : : : ; b

k�1

); b

k

) ;

i.e., principle 
(TC

0

) holds. By the same argument with R

��

instead of R

�

, if

R

1

2

= �

b

1

-CR then 


�

(TC

0

) holds. ut

Corollary 2 together with Prop. 4 and 5 prove Thm. 3. The proof of Thm. 6

suggests some open question:

{ First, is �

b

1

-CR = �

b

1

-CR

i

for some i?

{ For f 2 TC

0

, is there a relationship between the minimal i s.t. f is �

b

1

-

de�nable in �

b

1

-CR

i

and the nesting depth of CRN required to de�ne f in

the function algebra? Note that the proof of Thm. 4 actually shows every

function in TC

0

that can be de�ned by i nested applications of CRN is

�

b

1

-de�nable in �

b

1

-CR

i

.

{ Moreover, is there a relation between either of these complexity measures

and the depth of a TC

0

circuit family computing f?
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