On the Weakness of Sharply Bounded Polynomial Induction

Jan Johannsen
Friedrich-Alexander-Universität Erlangen-Nürnberg

May 4, 1994

Abstract

We shall show that if the theory S_{2}^{0} of sharply bounded polynomial induction is extended by symbols for certain functions and their defining axioms, it is still far weaker than T_{2}^{0}, which has ordinary sharply bounded induction. Furthermore, we show that this extended system $S_{2^{+}}^{0}$ cannot Σ_{1}^{b}-define every function in $A C^{0}$, the class of functions computable by polynomial size constant depth circuits.

1 Introduction

The theory S_{2} of bounded arithmetic and its fragments S_{2}^{i} and $T_{2}^{i}(i \geq 0)$ were defined in [Bu$]$. The language of these theories comprises the usual language of arithmetic plus additional symbols for the functions $\left\lfloor\frac{1}{2} x\right\rfloor,|x|:=\left\lceil\log _{2}(x+1)\right\rceil$ and $x \# y:=2^{|x| \cdot|y|}$. Quantifiers of the form $\forall x \leq t, \exists x \leq t$ are called bounded quantifiers. If the bounding term t is furthermore of the form $|s|$, the quantifier is called sharply bounded. The classes Σ_{i}^{b} and Π_{i}^{b} of the bounded arithmetic hierarchy are defined in analogy to the classes of the usual arithmetical hierarchy, where the i counts alternations of bounded quantifiers, ignoring the sharply bounded quantifiers.
S_{2}^{i} is axiomatized by a finite set of open axioms (called BASIC) plus the schema of polynomial induction (PIND) for Σ_{i}^{b}-formulae φ :

$$
\varphi(0) \wedge \forall x\left(\varphi\left(\left\lfloor\frac{1}{2} x\right\rfloor\right) \rightarrow \varphi(x)\right) \rightarrow \forall x \varphi(x)
$$

T_{2}^{i} is the same with the ordinary induction scheme for Σ_{i}^{b}-formulae replacing PIND.
These theories have a close connection to the polynomial hierarchy of Complexity Theory: the main theorem of $[\mathrm{Bu}]$ states that for $i \geq 1$, the Σ_{i}^{b}-definable functions of S_{2}^{i} are exactly the functions from \square_{i}^{p}, the class of functions computable in polynomial time using an oracle for a set in the $i-1^{\text {th }}$ level of this hierarchy. In that paper it is also shown that $T_{2}^{i} \subseteq S_{2}^{i+1} \subseteq T_{2}^{i+1}$. It is not known whether any of these inclusions is proper. The paper [K-P-T] shows that this question is related to the separation problem for the polynomial hierarchy.

In [Ta], Takeuti has proved that $S_{2}^{0} \neq T_{2}^{0}$ by showing that the former theory cannot define the predecessor function, while the latter can. He uses an interpretation of S_{2}^{0} in S_{2} where numbers are coded as descending sequences. We shall use a variant of Takeuti's method to strengthen his results in the following way:

We extend the language of bounded arithmetic by function symbols P and - for the predecessor and modified subtraction, as well as Count and MSP whose meaning is clear from the defining axioms below. Let $S_{2^{+}}^{0}$ be the theory in this extended language consisting of the $B A S I C$ axioms, the additional axioms

- $P 0=0, \quad P(S x)=x, \quad x>0 \rightarrow S(P x)=x$
- $x-0=x, \quad x-S y=P(x-y), \quad x \geq y \rightarrow(x-y)+y=x$, $x<y \rightarrow x-y=0$
- $\operatorname{Count}(0)=0, \quad \operatorname{Count}(2 x)=\operatorname{Count}(x)$, $\operatorname{Count}(S(2 x))=S(\operatorname{Count}(x))$
- $M S P(x, 0)=x, \quad M S P(x, S i)=\left\lfloor\frac{1}{2} M S P(x, i)\right\rfloor$
and the schema $\Sigma_{0}^{b}-P I N D$ (for sharply bounded formulae in the extended language).
We define w is a sequence of positive numbers (or "positive sequence" for short) by

$$
P S e q(w): \leftrightarrow S e q(w) \wedge \forall i<\operatorname{Len}(w) \beta(S i, w) \neq 0
$$

where the predicate $S e q$ and the functions Len and β are those defined in chapter 2 of $[\mathrm{Bu}]$. From now on, we shall use the functions and predicates defined there without further comment.

Natural numbers are coded by positive sequences as follows: 0 is coded by the empty sequence, and a positive number a is coded by a sequence $A=\left\langle a_{1}, \ldots, a_{k}\right\rangle$ with the following intended meaning: the binary representation of a consists of a block of a_{1} ones followed by a block of a_{2} zeros etc. E.g. the number 22 is 10110 in binary and is therefore coded by the sequence $\langle 1,1,2,1\rangle$.

Let Code denote this bijection between natural numbers and positive sequences. We shall see that Code is polynomial time computable (p.t.c. for short) and hence Σ_{1}^{b}-definable in S_{2}^{1}. We shall define an ordering \leq_{C} on positive sequences such that $\operatorname{Code}(a) \leq_{C} \operatorname{Code}(b)$ if and only if $a \leq b$.

For a function f, the code-version of f is the function C^{f} on positive sequences such that for all x_{1}, \ldots, x_{n}

$$
\operatorname{Code}^{-1}\left(C^{f}\left(\operatorname{Code}\left(x_{1}\right), \ldots, \operatorname{Code}\left(x_{n}\right)\right)\right)=f\left(x_{1}, \ldots, x_{n}\right)
$$

The code-versions of the primitive functions $|\cdot|,\left\lfloor\frac{1}{2} \cdot\right\rfloor, S, P,+,-, \cdot, \#$, Count and MSP can be Σ_{1}^{b}-defined in S_{2}^{1}.

Therefore we can interpret $S_{2^{+}}^{0}$ in S_{2} via this encoding and use this to prove that integer division by three cannot be Σ_{1}^{b}-defined in S_{2+}^{0}, whereas it can be defined in T_{2}^{0} by use of induction for open formulae only.

Furthermore we show that $S_{2^{+}}^{0}$ cannot Σ_{1}^{b}-define every function in a very small complexity class, viz. the class $A C^{0}$ of functions computable by uniform families of polynomial size, constant depth unbounded fan-in circuits.

2 Coding Numbers by Sequences

We shall use the fact that S_{2}^{1} can Σ_{1}^{b}-define functions by length bounded summation, i.e. let f be a Σ_{1}^{b}-defined function, then we can define $F(k)=\sum_{i=0}^{|k|} f(i)$. The existence and uniqueness conditions are easily proved in S_{2}^{1} by use of sequence encoding. In particular we can define a function Σ such that

$$
\Sigma(w)= \begin{cases}\sum_{i=1}^{\operatorname{Len}(w)} \beta(i, w) & \text { if } S e q(w) \\ 0 & \text { else }\end{cases}
$$

The function Code is p.t.c. and hence Σ_{1}^{b}-definable in S_{2}^{1}. To see this, define the functions f_{1}, f_{2} and f as follows:

$$
\begin{aligned}
f_{1}(a) & :=\mu i \leq|a|(\operatorname{Bit}(|a|-S i, a)=0) \\
f_{2}(a) & :=f_{1}\left(\left(2^{|a|-f_{1}(a)}-1\right)-L S P\left(|a|-f_{1}(a), a\right)\right) \\
f(a) & := \begin{cases}0 * f_{1}(a) * f_{2}(a) & \text { if } f_{1}(a)>0 \text { and } f_{2}(a)>0 \\
0 * f_{1}(a) & \text { if } f_{1}(a)>0 \text { and } f_{2}(a)=0 \\
0 & \text { else }\end{cases}
\end{aligned}
$$

These are Σ_{1}^{b}-definable in S_{2}^{1} by theorem 2.9 of [Bu$]$ and hence p.t.c. Now Code can be defined by limited iteration from f :

$$
\begin{aligned}
\tau(a, 0) & :=0 \\
\tau(a, S i) & :=\tau(a, i) * * f(L S P(a,|a|-\Sigma(\tau(a, i))))
\end{aligned}
$$

Then $\operatorname{Code}(a):=\tau(a,|a|)$ and for all $i \leq|a|:|\tau(a, i)| \leq|a| \cdot(2|a|+2)$. Note that Code $^{-1}$ is not p.t.c. since $\operatorname{Code}^{-1}(\langle 1, a\rangle)=2^{a}$ for $a \geq 1$.

For the rest of this section, let $A:=\left\langle a_{1}, \ldots a_{k}\right\rangle$ and $B:=\left\langle b_{1}, \ldots, b_{\ell}\right\rangle$. The ordering \leq_{C} of positive sequences is defined by

$$
\begin{aligned}
A<_{C} B: \leftrightarrow & \Sigma(A)<\Sigma(B) \vee(\Sigma(A)=\Sigma(B) \wedge \exists i \leq \min (\ell, k) \\
& \left.\left(\forall j<i\left(a_{j}=b_{j}\right) \wedge\left(\text { Even }(i) \wedge a_{i}>b_{i} \vee \operatorname{Odd}(i) \wedge a_{i}<b_{i}\right)\right)\right), \\
A=_{C} B: \leftrightarrow & k=\ell \wedge \forall i \leq k a_{i}=b_{i} \\
A \leq_{C} B: \leftrightarrow & A<_{C} B \vee A={ }_{C} B .
\end{aligned}
$$

These definitions are obviously Δ_{1}^{b} w.r.t. S_{2}^{1}.
For some of the function symbols, the code-versions can easily defined, viz.

$$
\begin{aligned}
C^{|\cdot|}(A) & :=\operatorname{Code}(\Sigma(A)) \\
C^{\left\lfloor\frac{1}{2} \cdot\right\rfloor}(A) & := \begin{cases}0 & \text { if } A=0 \text { or } A=\langle 1\rangle \\
\left\langle a_{1}, \ldots, a_{k-1}\right\rangle & \text { if } a_{k}=1 \\
\left\langle a_{1}, \ldots, a_{k}-1\right\rangle & \text { if } a_{k}>1\end{cases} \\
C^{\#}(A, B) & :=\langle 1, \Sigma(A) \cdot \Sigma(B)\rangle
\end{aligned}
$$

$$
\begin{gathered}
C^{S}(A):= \begin{cases}\langle 1\rangle & \text { if } A=0 \\
\left\langle 1, a_{1}\right\rangle & \text { if } k=1 \\
\left\langle a_{1}, \ldots, a_{k-1}-1,1, a_{k}\right\rangle & \text { if } k \geq 3 \text { is odd and } a_{k-1}>1 \\
\left\langle a_{1}, \ldots, a_{k-2}+1, a_{k}\right\rangle & \text { if } k \geq 3 \text { is odd and } a_{k-1}=1 \\
\left\langle a_{1}, \ldots, a_{k}-1,1\right\rangle & \text { if } k \text { is even and } a_{k}>1 \\
\left\langle a_{1}, \ldots, a_{k-1}+1\right\rangle & \text { if } k \text { is even and } a_{k}=1\end{cases} \\
C^{\text {Count }(A)}:=\operatorname{Code}\left(\sum_{\substack{i \leq k \\
i \text { odd }}} a_{i}\right)
\end{gathered}
$$

These are all obviously p.t.c. and can thus be Σ_{1}^{b}-definable in S_{2}^{1}. To obtain the code-version of addition, define the following functions:

$$
\begin{aligned}
\operatorname{Cut}(A, n) & :=\max \left\{i \leq k ; \sum_{j=i}^{k} a_{j} \geq n\right\} \\
\operatorname{Head}(A, n) & := \begin{cases}\left\langle a_{1}, \ldots, a_{m-1}\right\rangle & \text { if } h=0 \\
\left\langle a_{1}, \ldots, a_{m-1}, h\right\rangle & \text { else }\end{cases} \\
\operatorname{Tail}(A, n) & :=\left\langle p, t, a_{m+1}, \ldots, a_{k}\right\rangle
\end{aligned}
$$

where $m:=\operatorname{Cut}(A, n), h:=\sum_{j=m}^{k} a_{j}-n, t:=a_{m}-h$ and $p:=\operatorname{Mod} 2(m)+1$.

$$
\operatorname{Merge}(A, B):= \begin{cases}\left\langle a_{1}, \ldots, a_{k}, b_{2}, \ldots b_{\ell}\right\rangle & \text { if } \operatorname{Mod} 2(k)=\operatorname{Mod} 2\left(b_{1}\right) \\ \left\langle a_{1}, \ldots, a_{k}+b_{2}, \ldots b_{\ell}\right\rangle & \text { else }\end{cases}
$$

Now we can define

$$
C^{+}(A, B):= \begin{cases}A d d(A, B) & \text { if } A \leq_{C} B \\ A d d(B, A) & \text { else }\end{cases}
$$

where $A d d$ is recursively defined by

$$
\operatorname{Add}(A, B):= \begin{cases}A & \text { if } B=\langle \rangle \\ \operatorname{Merge}\left(\operatorname{Add}\left(\operatorname{Head}\left(A, b_{\ell}\right),\left\langle b_{1}, \ldots, b_{\ell-1}\right\rangle\right), \operatorname{Tail}\left(A, b_{\ell}\right)\right) & \text { if } \ell \text { is even } \\ \operatorname{Add}\left(\operatorname{Step}(A, B),\left\langle b_{1}, \ldots, b_{\ell-1}+b_{\ell}\right\rangle\right) & \text { if } \ell \text { is odd }\end{cases}
$$

and $\operatorname{Step}(A, B)=\operatorname{Code}\left(\operatorname{Code}^{-1}(A)+2^{b_{\ell}}-1\right)$ is given by Table 1 .
Since the computation of $\operatorname{Add}(A, B)$ terminates after ℓ recursions, and the space required to store intermediate values is bounded by a polynomial in $|A|, \ell$ and $\operatorname{Size}(A)$, the recursive definition could be written as a limited iteration, and hence $A d d$ is p.t.c. and so is C^{+}.

We will now define the code-version of modified subtraction :

$$
C^{-}(A, B):= \begin{cases}0 & \text { if } A \leq_{C} B \\ \operatorname{Sub}(A, B) & \text { else }\end{cases}
$$

Since $a-b=C-((C-a)+b)$, if we choose $C=2^{|a|+1}-1$ (i.e. do subtraction by taking the twos complement and addition), we can define

$$
\begin{aligned}
\operatorname{Red}(A) & :=\left\langle a_{2}, \ldots, a_{k}\right\rangle \\
\operatorname{Sub}(A, B) & :=\operatorname{Red}(\operatorname{Add}(\langle 1\rangle * * A, B)) .
\end{aligned}
$$

Table 1: Definition of $\operatorname{Step}(A, B)$. To decrease the number of cases, zero entries in a sequence are treated as if they were deleted and the entries left and right of them were added then.

$C^{P}(A)$ is then simply defined as $C^{-}(A,\langle 1\rangle)$. Now for the code-version of multiplication: We use an iterated version of the so-called Russian Peasant Algorithm, i.e.:

$$
\begin{aligned}
x \cdot 0 & :=0 \\
x \cdot 2^{i} y & :=2^{i} x \cdot y \text { where } y \text { is odd } \\
x \cdot t^{(i)}(y) & :=2^{i} x \cdot y+\sum_{j=0}^{i-1} 2^{j} x \quad \text { where } y \text { is even and } t(x):=2 x+1 .
\end{aligned}
$$

An operation corresponding to multiplication by powers of two is easily defined by

$$
\operatorname{MPT}(A, n):=\left\{\begin{array}{ll}
0 & \text { if } A=0 \\
\left\langle a_{1}, \ldots, a_{k}+n\right\rangle & \text { if } k \text { is even } \\
\left\langle a_{1}, \ldots, a_{k}, n\right\rangle & \text { if } k \text { is odd }
\end{array} .\right.
$$

Then since $\sum_{j=0}^{i-1} 2^{j} x=\left(\sum_{j=0}^{i-1} 2^{j}\right) \cdot x=\left(2^{i}-1\right) \cdot x=2^{i} x-x, C$ can be recursively defined by

$$
C^{\cdot}(A, B):=\left\{\begin{array}{ll}
0 & \text { if } B=0 \\
C^{\cdot}\left(M P T\left(A, b_{\ell}\right),\left\langle b_{1}, \ldots, b_{\ell-1}\right\rangle\right) & \text { if } \ell \text { is even } \\
C^{+}\left(C^{\cdot}\left(\operatorname{MPT}\left(A, b_{l}\right),\left\langle b_{1}, \ldots, b_{\ell-1}\right\rangle\right), \operatorname{Sub}\left(\operatorname{MPT}\left(A, b_{l}\right), A\right)\right) & \text { if } \ell \text { is odd }
\end{array} .\right.
$$

Just as in the case of $A d d$, the number of recursions used to compute $C \cdot(A, B)$ is ℓ, and the space required can be bounded by a polynomial in values that are bounded by lengths, thus C. is computable in polynomial time.

To define the code-version of $M S P$, we need the possibility to decode sequences representing small numbers, i.e. numbers bounded by a length. So let

$$
\operatorname{Decode}(A, B):= \begin{cases}0 & \text { if } A>_{C} C^{|\cdot|}(B) \\ \operatorname{Code}^{-1}(A) & \text { else }\end{cases}
$$

But this function is p.t.c. since in the case where it has to be computed (i.e. if $A \leq_{C} C^{|\cdot|}(B)$), we have $C_{o d e}{ }^{-1}(A) \leq \Sigma(B)$ and this can be computed as

$$
\operatorname{Code}^{-1}(A)=\sum_{i=0}^{|\Sigma(B)|+1} \operatorname{Par}(B, i) \cdot 2^{i}
$$

where $\operatorname{Par}(B, i):=\operatorname{Cut}(A, i) \bmod 2$, and exponentiation can be used since $i \leq|\Sigma(B)|+1$ and therefore 2^{i} can be replaced by $2^{\min (i,|2 \Sigma(B)|)}$. Hence the function Decode is Σ_{1}^{b}-definable in S_{2}^{1}, and we can define

$$
C^{M S P}(A, B):= \begin{cases}0 & \text { if } B \geq_{C} C^{|\cdot|}(A) \\ \operatorname{Head}(A, \operatorname{Decode}(B, A)) & \text { else }\end{cases}
$$

3 Interpretation of $S_{2^{+}}^{0}$ in S_{2}

We shall now use the coding defined above to interpret $S_{2^{+}}^{0}$ in S_{2}. For a term t, the interpretation t^{C} is defined as follows:

- If t is 0 or a variable, then $t^{C}:=t$.
- If t is $f(s)$, where $f \in\left\{||,.\left\lfloor\frac{1}{2} \cdot\right\rfloor, S, P\right.$, Count $\}$, then $t^{C}:=C^{f}\left(s^{C}\right)$.
- If t is $s_{1} \circ s_{2}$, where $\circ \in\{+,,-, \cdot, \#, M S P\}$, then $t^{C}:=C^{\circ}\left(s_{1}^{C}, s_{2}^{C}\right)$.

For a formula φ, the interpretation φ^{C} is defined by:

- If φ is $s=t$ or $s \leq t$, then $\varphi^{C}:=s^{C}={ }_{C} t^{C}$ or $s^{C} \leq_{C} t^{C}$ respectively.
- The interpretation commutes with the logical connectives as usual.
- If φ is $\exists x \psi$ or $\forall x \psi$, then $\varphi^{C}:=\exists x\left(P S e q(x) \wedge \psi^{C}\right)$ or $\forall x\left(P S e q(x) \rightarrow \psi^{C}\right)$ respectively.
- If φ is $\exists x \leq t \psi$ or $\forall x \leq t \psi$, then φ^{C} is defined as $\exists x\left(P S e q(x) \wedge x \leq_{C} t^{C} \rightarrow \psi^{C}\right)$ or $\forall x\left(P S e q(x) \wedge x \leq_{C} t^{C} \wedge \psi^{C}\right)$ respectively.

Note that the interpretation of a bounded formula is not necessarily equivalent to a bounded formula. Nevertheless, the interpretation of a sharply bounded formula is equivalent to a bounded formula since we can prove

$$
\operatorname{PSeq}(x) \wedge x \leq_{C} C^{|\cdot|}\left(t^{C}\right) \rightarrow x \leq S q B d\left(\left|\Sigma\left(t^{C}\right)\right|, \Sigma\left(t^{C}\right)\right)
$$

Theorem 1 If $\varphi\left(a_{1}, \ldots, a_{n}\right)$ is provable in $S_{2^{+}}^{0}$, then

$$
P S e q\left(a_{1}\right) \wedge \ldots \wedge P S e q\left(a_{n}\right) \rightarrow \varphi^{C}\left(a_{1}, \ldots, a_{n}\right)
$$

can be proved in S_{2}.
Proof: It suffices to prove the interpretations of the non-logical axioms of S_{2+}^{0} in S_{2}. The axioms from $B A S I C$ and the additional axioms for the function symbols $P, \dot{-}$, Count and $M S P$ are all verified by long but straightforward computations. It remains to show that the interpretation of every instance of $\Sigma_{0}^{b}-P I N D$ can be proved, or more general

$$
S_{2} \vdash \varphi(0) \wedge \forall x\left(P S e q(x) \wedge \varphi\left(C^{\left\lfloor\frac{1}{2} \cdot\right\rfloor}(x)\right) \rightarrow \varphi(x)\right) \rightarrow \forall x(P S e q(x) \rightarrow \varphi(x))
$$

where $\varphi(x)$ is a bounded formula. So suppose

$$
\varphi(0) \wedge \forall x\left(P S e q(x) \wedge \varphi\left(C^{\left\lfloor\frac{1}{2} \cdot\right\rfloor}(x)\right) \rightarrow \varphi(x)\right)
$$

Suppose furthermore that $\exists x(P S e q(x) \wedge \neg \varphi(x))$. Then by MIN, which is provable in S_{2} by Thm. 2.20 of $[\mathrm{Bu}]$, we have

$$
\exists x(P S e q(x) \wedge \neg \varphi(x) \wedge \forall y<x(\operatorname{PSeq}(y) \rightarrow \varphi(y))) .
$$

Let this minimal x be a, then since $P S e q(a)$, we also have $P S e q\left(C^{\left\lfloor\frac{1}{2} \cdot\right\rfloor}(a)\right)$, and $C^{\left\lfloor\frac{1}{2} \cdot\right\rfloor}(a)<a$, hence $\varphi\left(C^{\left\lfloor\frac{1}{2} \cdot\right\rfloor}(a)\right)$, and the first assumption leads to a contradiction.

Let $f(x)$ denote the function $\left\lfloor\frac{1}{3} x\right\rfloor . f$ can be defined by the open formula

$$
b=f(a): \leftrightarrow 3 b=a \vee 3 b+1=a \vee 3 b+2=a
$$

In T_{2}^{0}, integer division $\left\lfloor\frac{a}{b}\right\rfloor$ can be defined: to prove the existence, use the induction axiom for the quantifier free formula $b \cdot x>S a$.

Theorem $2 \forall x \exists y y=f(x)$ cannot be proved in $S_{2^{+}}^{0}$.
Proof: Suppose $S_{2^{+}}^{0} \vdash \forall x \exists y y=f(x)$, then by Theorem 1

$$
S_{2} \vdash \forall x \operatorname{PSeq}(x) \rightarrow \exists y\left(P S e q(y) \wedge y=C^{f}(x)\right)
$$

Then by Parikh's Theorem it follows that there is a term $t(x)$ in the language of bounded arithmetic s.t. in particular

$$
S_{2} \vdash \exists y \leq t(a)\left(P S e q(y) \wedge y=C^{f}(\langle a+1\rangle)\right) .
$$

But $\langle a+1\rangle=\operatorname{Code}\left(2^{a+1}-1\right)$, and one easily sees that $f\left(2^{a+1}-1\right)$ is such that y must be of the form $y=\langle 1, \ldots, 1\rangle$ with a ones, hence $\operatorname{Len}(y)=a$, so $y>2^{a}$.

Hence T_{2}^{0} is not $\forall \exists \Sigma_{0^{-}}^{b}$-conservative over $S_{2^{+}}^{0}$, and Parikhs Theorem immediately yields
Corollary $3 T_{2}^{0}$ is not $\forall \Sigma_{1}^{b}$-conservative over S_{2+}^{0}.
We conjecture that for any number k that is not a power of two, $S_{2^{+}}^{0}$ cannot define the function $\left\lfloor\frac{1}{k} x\right\rfloor$. Clearly it would suffice to prove this for k an odd prime number.

$S_{2^{+}}^{0}$ and Circuit Complexity

$A C^{0}$ denotes the class of functions computable by uniform families of polynomial size constant depth unbounded fan-in circuits. In [Cl], Clote shows that it is reasonable to consider this class to be equal to Immerman's class $F O$, which is known to be equal to the alternating logarithmic time hierarchy LH (cf. [B-I-S]).

Theorem $4 S_{2^{+}}^{0}$ cannot Σ_{1}^{b}-define every function in $A C^{0}$.
Proof: According to Clote $[\mathrm{Cl}], A C^{0}$ is the smallest class containing the initial functions $0,2 x, 2 x+1$, projections, $|x|$, \# and Bit and closed under composition and CRN, which is the following scheme: f is defined by CRN from g, h_{0}, h_{1} if $h_{i}(\underline{x}, y) \leq 1$ for $i=0,1$ and every \underline{x}, y, and

$$
\begin{aligned}
f(\underline{x}, 0) & =g(\underline{x}) \\
f(\underline{x}, 2 y) & =2 f(\underline{x}, y)+h_{0}(\underline{x}, y) \quad \text { for } y>0 \\
f(\underline{x}, 2 y+1) & =2 f(\underline{x}, y)+h_{1}(\underline{x}, y)
\end{aligned}
$$

Consider the function $f(x):=\left\lfloor\frac{1}{3} P(1 \# x)\right\rfloor . P(1 \# x)=2^{|x|}-1$ is the number of length $|x|$ where every bit is 1 . Thus $f(x)$ is a number of length $|x|-1$ with every second bit set 1 , the remaining bits set 0 .

Now this function f can be defined by CRN from $g(x)=0$ and $h_{0}(x)=h_{1}(x)=|x| \bmod 2=$ $\operatorname{Bit}(|x|, 0)$:

$$
\begin{aligned}
f(0) & :=0 \\
f(x) & :=2 f\left(\left\lfloor\frac{1}{2} x\right\rfloor\right)+\left\lfloor\left.\left\lfloor\frac{1}{2} x\right\rfloor \right\rvert\, \bmod 2 \text { for } x>0\right.
\end{aligned}
$$

The same argument as in the proof of Theorem 2 shows that this function f cannot be Σ_{1}^{b} defined in $S_{2^{+}}^{0}$, since for the crucial numbers b with $\operatorname{Code}(b)=\langle a+1\rangle$ for some a we have $f(b)=\left\lfloor\frac{1}{3} b\right\rfloor$.

On the other hand, multiplication does not belong to $A C^{0}$ (cf. [Cl]). Hence the Σ_{1}^{b}-definable functions of $S_{2^{+}}^{0}$ seem to correspond to no reasonable complexity class.

References

[B-I-S] Barrington, D. A. M., Immermann, N., Straubing, H.: On uniformity within $N C^{1}$. Journal of Computing and Systems Sciences 41, 274-306 (1990)
[Bu] Buss, S. R.: Bounded arithmetic. Napoli: Bibliopolis 1986
[Cl] Clote, P.: Sequential, machine independent characterizations of the parallel complexity classes $A L o g T I M E, A C^{k}, N C^{k}$ and $N C$. In: Buss, S. R., Scott, P. J. (eds.), Feasible Mathematics, pp. 49-69. Birkhäuser 1990
[K-P-T] Krajíček, J., Pudlák, P., Takeuti, G.: Bounded arithmetic and the polynomial hierarchy. Annals of Pure and Applied Logic 52, 143-153 (1991)
[Ta] Takeuti, G.: Sharply bounded arithmetic and the function $a-1$. In: Logic and Computation, pp. 281-288. Providence: American Mathematical Society 1990

