
On the Weakness of Sharply Bounded Polynomial

Induction

Jan Johannsen

Friedrich-Alexander-Universität Erlangen-Nürnberg

May 4, 1994

Abstract

We shall show that if the theory S0
2 of sharply bounded polynomial induction is extended

by symbols for certain functions and their defining axioms, it is still far weaker than T 0
2 ,

which has ordinary sharply bounded induction. Furthermore, we show that this extended

system S0

2+ cannot Σb

1-define every function in AC0, the class of functions computable by

polynomial size constant depth circuits.

1 Introduction

The theory S2 of bounded arithmetic and its fragments Si
2 and T i

2 (i ≥ 0) were defined in

[Bu]. The language of these theories comprises the usual language of arithmetic plus additional

symbols for the functions ⌊ 1
2x⌋, |x| := ⌈log2(x+1)⌉ and x#y := 2|x|·|y|. Quantifiers of the form

∀x≤ t , ∃x≤ t are called bounded quantifiers. If the bounding term t is furthermore of the form

|s|, the quantifier is called sharply bounded. The classes Σb
i and Πb

i of the bounded arithmetic

hierarchy are defined in analogy to the classes of the usual arithmetical hierarchy, where the i

counts alternations of bounded quantifiers, ignoring the sharply bounded quantifiers.

Si
2 is axiomatized by a finite set of open axioms (called BASIC) plus the schema of poly-

nomial induction (PIND) for Σb
i -formulae ϕ:

ϕ(0) ∧ ∀x (ϕ(⌊
1

2
x⌋) → ϕ(x)) → ∀x ϕ(x)

T i
2 is the same with the ordinary induction scheme for Σb

i -formulae replacing PIND.

These theories have a close connection to the polynomial hierarchy of Complexity Theory:

the main theorem of [Bu] states that for i ≥ 1, the Σb
i -definable functions of Si

2 are exactly the

functions from ✷
p
i , the class of functions computable in polynomial time using an oracle for a

set in the i− 1th level of this hierarchy. In that paper it is also shown that T i
2 ⊆ Si+1

2 ⊆ T i+1
2 .

It is not known whether any of these inclusions is proper. The paper [K-P-T] shows that this

question is related to the separation problem for the polynomial hierarchy.

In [Ta], Takeuti has proved that S0
2 6= T 0

2 by showing that the former theory cannot define

the predecessor function, while the latter can. He uses an interpretation of S0
2 in S2 where

numbers are coded as descending sequences. We shall use a variant of Takeuti’s method to

strengthen his results in the following way:

1

We extend the language of bounded arithmetic by function symbols P and . for the

predecessor and modified subtraction, as well as Count and MSP whose meaning is clear from

the defining axioms below. Let S0
2+ be the theory in this extended language consisting of the

BASIC axioms, the additional axioms

• P0 = 0, P (Sx) = x, x > 0 → S(Px) = x

• x . 0 = x, x . Sy = P (x . y), x ≥ y → (x . y) + y = x,

x < y → x . y = 0

• Count(0) = 0, Count(2x) = Count(x),

Count(S(2x)) = S(Count(x))

• MSP (x, 0) = x, MSP (x, Si) = ⌊ 1
2MSP (x, i)⌋

and the schema Σb
0 − PIND (for sharply bounded formulae in the extended language).

We define w is a sequence of positive numbers (or ”positive sequence” for short) by

PSeq(w) :↔ Seq(w) ∧ ∀i<Len(w) β(Si, w) 6= 0 ,

where the predicate Seq and the functions Len and β are those defined in chapter 2 of [Bu].

From now on, we shall use the functions and predicates defined there without further comment.

Natural numbers are coded by positive sequences as follows: 0 is coded by the empty

sequence, and a positive number a is coded by a sequence A = 〈a1, . . . , ak〉 with the following

intended meaning: the binary representation of a consists of a block of a1 ones followed by

a block of a2 zeros etc. E.g. the number 22 is 10110 in binary and is therefore coded by the

sequence 〈1, 1, 2, 1〉.

Let Code denote this bijection between natural numbers and positive sequences. We shall

see that Code is polynomial time computable (p.t.c. for short) and hence Σb
1-definable in S1

2 .

We shall define an ordering ≤C on positive sequences such that Code(a) ≤C Code(b) if and

only if a ≤ b.

For a function f , the code-version of f is the function Cf on positive sequences such that

for all x1, . . . , xn

Code−1(Cf (Code(x1), . . . , Code(xn))) = f(x1, . . . , xn) .

The code-versions of the primitive functions |.|, ⌊ 1
2 .⌋, S, P,+,

. , ·,#, Count and MSP can be

Σb
1-defined in S1

2 .

Therefore we can interpret S0
2+ in S2 via this encoding and use this to prove that integer

division by three cannot be Σb
1-defined in S0

2+ , whereas it can be defined in T 0
2 by use of

induction for open formulae only.

Furthermore we show that S0
2+ cannot Σb

1-define every function in a very small complexity

class, viz. the classAC0 of functions computable by uniform families of polynomial size, constant

depth unbounded fan-in circuits.

2

2 Coding Numbers by Sequences

We shall use the fact that S1
2 can Σb

1-define functions by length bounded summation, i.e. let f

be a Σb
1-defined function, then we can define F (k) =

∑|k|
i=0 f(i). The existence and uniqueness

conditions are easily proved in S1
2 by use of sequence encoding. In particular we can define a

function Σ such that

Σ(w) =

Len(w)
∑

i=1

β(i, w) if Seq(w)

0 else

.

The function Code is p.t.c. and hence Σb
1-definable in S1

2 . To see this, define the functions f1, f2

and f as follows:

f1(a) := µi ≤ |a| (Bit(|a| − Si, a) = 0)

f2(a) := f1((2
|a|−f1(a) − 1)

.
LSP (|a| − f1(a), a))

f(a) :=

0 ∗ f1(a) ∗ f2(a) if f1(a) > 0 and f2(a) > 0

0 ∗ f1(a) if f1(a) > 0 and f2(a) = 0

0 else

These are Σb
1-definable in S1

2 by theorem 2.9 of [Bu] and hence p.t.c. Now Code can be defined

by limited iteration from f :

τ(a, 0) := 0

τ(a, Si) := τ(a, i) ∗∗ f(LSP (a, |a| − Σ(τ(a, i))))

Then Code(a) := τ(a, |a|) and for all i ≤ |a| : |τ(a, i)| ≤ |a| · (2|a| + 2). Note that Code−1 is

not p.t.c. since Code−1(〈1, a〉) = 2a for a ≥ 1.

For the rest of this section, let A := 〈a1, . . . ak〉 and B := 〈b1, . . . , bℓ〉. The ordering ≤C of

positive sequences is defined by

A <C B :↔ Σ(A) < Σ(B) ∨ (Σ(A) = Σ(B) ∧ ∃i ≤ min(ℓ, k)

(∀j < i (aj = bj) ∧ (Even(i) ∧ ai > bi ∨ Odd(i) ∧ ai < bi))) ,

A =C B :↔ k = ℓ ∧ ∀i ≤ k ai = bi ,

A ≤C B :↔ A <C B ∨A =C B .

These definitions are obviously ∆b
1 w.r.t. S1

2 .

For some of the function symbols, the code-versions can easily defined, viz.

C|·|(A) := Code(Σ(A))

C⌊ 1
2
.⌋(A) :=

0 if A = 0 or A = 〈1〉

〈a1, . . . , ak−1〉 if ak = 1

〈a1, . . . , ak − 1〉 if ak > 1

C#(A,B) := 〈1,Σ(A) · Σ(B)〉

3

CS(A) :=

〈1〉 if A = 0

〈1, a1〉 if k = 1

〈a1, . . . , ak−1 − 1, 1, ak〉 if k ≥ 3 is odd and ak−1 > 1

〈a1, . . . , ak−2 + 1, ak〉 if k ≥ 3 is odd and ak−1 = 1

〈a1, . . . , ak − 1, 1〉 if k is even and ak > 1

〈a1, . . . , ak−1 + 1〉 if k is even and ak = 1

CCount(A) := Code

∑

i≤k

i odd

ai

These are all obviously p.t.c. and can thus be Σb
1-definable in S1

2 . To obtain the code-version

of addition, define the following functions:

Cut(A, n) := max{i ≤ k ;

k
∑

j=i

aj ≥ n}

Head(A, n) :=

{

〈a1, . . . , am−1〉 if h = 0

〈a1, . . . , am−1, h〉 else

Tail(A, n) := 〈p, t, am+1, . . . , ak〉

where m := Cut(A, n), h :=
∑k

j=m aj − n, t := am − h and p := Mod2(m) + 1.

Merge(A,B) :=

{

〈a1, . . . , ak, b2, . . . bℓ〉 if Mod2(k) = Mod2(b1)

〈a1, . . . , ak + b2, . . . bℓ〉 else

Now we can define

C+(A,B) :=

{

Add(A,B) if A ≤C B

Add(B,A) else

where Add is recursively defined by

Add(A,B) :=

A if B = 〈 〉

Merge(Add(Head(A, bℓ) , 〈b1, . . . , bℓ−1〉) , T ail(A, bℓ)) if ℓ is even

Add(Step(A,B) , 〈b1, . . . , bℓ−1 + bℓ〉) if ℓ is odd

and Step(A,B) = Code(Code−1(A) + 2bℓ − 1) is given by Table 1.

Since the computation of Add(A,B) terminates after ℓ recursions, and the space required

to store intermediate values is bounded by a polynomial in |A|, ℓ and Size(A), the recursive

definition could be written as a limited iteration, and hence Add is p.t.c. and so is C+.

We will now define the code-version of modified subtraction :

C
.

(A,B) :=

{

0 if A ≤C B

Sub(A,B) else

Since a− b = C − ((C − a) + b), if we choose C = 2|a|+1 − 1 (i.e. do subtraction by taking the

twos complement and addition), we can define

Red(A) := 〈a2, . . . , ak〉

Sub(A,B) := Red(Add(〈1〉 ∗∗A , B)) .

4

Table 1: Definition of Step(A,B). To decrease the number of cases, zero entries in a sequence

are treated as if they were deleted and the entries left and right of them were added then.

m=k 〈a1, . . . , ak−1, ak − bℓ, bℓ〉

m+1 h>0 〈a1, . . . , ak−3, h− 1, 1, t, ak−1 − 1, 1, ak〉

= m≥4 〈a1, . . . , ak−5, ak−4 − 1, 1, ak−3 + ak−2, ak−1 − 1, 1, ak〉
m

k−1
h=0

m=2 〈1, a1 + a2, a3 − 1, 1, a4〉
even

m+1 h>0 〈a1, . . . , am−1, h− 1, 1, t, am+1, . . . , ak−1 − 1, 1, ak〉
k

< m≥4 〈a1, . . . , am−3, am−2 − 1, 1, am−1 + am, am+1, . . . , ak−1 − 1, 1, ak〉
even

k−1
h=0

m=2 〈1, a1 + a2, a3, . . . , ak−1 − 1, 1, ak〉

m+1 m≥3 〈a1, . . . , ak−3, ak−2 − 1, 1, h, t− 1, 1, ak〉

m =k m=1 〈1, h, t− 1, 1, a2〉

odd m+1 m≥3 〈a1, . . . , am−2, am−1 − 1, 1, h, t, am+1, . . . , ak−1 − 1, 1, ak〉

<k m=1 〈1, h, t, a2, . . . , ak−1 − 1, 1, ak〉

h≥1 〈a1, . . . , ak−2, h− 1, 1, t, ak − 1, 1〉
m+1

m≥4 〈a1, . . . , ak−4, ak−3 − 1, 1, ak−2 + ak−1, ak − 1, 1〉

m
=k h=0

m=2 〈1, a1 + a2, a3 − 1, 1〉

even h≥1 〈a1, . . . , am−1, h− 1, 1, t, am+1, . . . , ak − 1, 1〉

k
m+1

m≥4 〈a1, . . . , am−3, am−2 − 1, 1, am−1 + am, am+1, . . . , ak − 1, 1〉

odd
<k h=0

m=2 〈1, a1 + a2, a3, . . . , ak − 1, 1〉

m≥3 〈a1, . . . , am−2, am−1 − 1, 1, h, t, am+1, . . . , ak − 1, 1〉

m
m<k

m=1 〈1, h, t, a2, . . . , ak − 1, 1〉

odd k≥3 〈a1, . . . , ak−1 − 1, 1, ak − bℓ, bℓ − 1, 1〉
m=k

k=1 〈1, a1 − bℓ, bℓ − 1, 1〉

5

CP (A) is then simply defined as C
.

(A, 〈1〉). Now for the code-version of multiplication: We

use an iterated version of the so-called Russian Peasant Algorithm, i.e.:

x · 0 := 0

x · 2iy := 2ix · y where y is odd

x · t(i)(y) := 2ix · y +
i−1
∑

j=0

2jx where y is even and t(x) := 2x+ 1.

An operation corresponding to multiplication by powers of two is easily defined by

MPT (A, n) :=

0 if A = 0

〈a1, . . . , ak + n〉 if k is even

〈a1, . . . , ak, n〉 if k is odd

.

Then since
∑i−1

j=0 2jx = (
∑i−1

j=0 2j) · x = (2i − 1) · x = 2ix− x, C· can be recursively defined by

C·(A,B) :=

0 if B = 0

C·(MPT (A, bℓ), 〈b1, . . . , bℓ−1〉) if ℓ is even

C+(C·(MPT (A, bl), 〈b1, . . . , bℓ−1〉), Sub(MPT (A, bl), A)) if ℓ is odd

.

Just as in the case of Add, the number of recursions used to compute C·(A,B) is ℓ, and the

space required can be bounded by a polynomial in values that are bounded by lengths, thus C·

is computable in polynomial time.

To define the code-version of MSP , we need the possibility to decode sequences representing

small numbers, i.e. numbers bounded by a length. So let

Decode(A,B) :=

{

0 if A >C C|·|(B)

Code−1(A) else
.

But this function is p.t.c. since in the case where it has to be computed (i.e. if A ≤C C|·|(B)),

we have Code−1(A) ≤ Σ(B) and this can be computed as

Code−1(A) =

|Σ(B)|+1
∑

i=0

Par(B, i) · 2i

where Par(B, i) := Cut(A, i)mod 2, and exponentiation can be used since i ≤ |Σ(B)| + 1 and

therefore 2i can be replaced by 2min(i,|2Σ(B)|). Hence the function Decode is Σb
1-definable in S1

2 ,

and we can define

CMSP (A,B) :=

{

0 if B ≥C C|·|(A)

Head(A,Decode(B,A)) else
.

3 Interpretation of S0
2+ in S2

We shall now use the coding defined above to interpret S0
2+ in S2. For a term t, the interpretation

tC is defined as follows:

• If t is 0 or a variable, then tC := t.

6

• If t is f(s), where f ∈ {|.| , ⌊ 1
2 .⌋ , S , P , Count}, then tC := Cf (sC).

• If t is s1 ◦ s2, where ◦ ∈ {+, , . , ·,# , MSP}, then tC := C◦(sC
1 , s

C
2).

For a formula ϕ, the interpretation ϕC is defined by:

• If ϕ is s = t or s ≤ t, then ϕC := sC =C tC or sC ≤C tC respectively.

• The interpretation commutes with the logical connectives as usual.

• If ϕ is ∃x ψ or ∀x ψ, then ϕC := ∃x (PSeq(x) ∧ ψC) or ∀x (PSeq(x) → ψC) respectively.

• If ϕ is ∃x ≤ t ψ or ∀x ≤ t ψ, then ϕC is defined as ∃x (PSeq(x) ∧ x ≤C tC → ψC) or

∀x (PSeq(x) ∧ x ≤C tC ∧ ψC) respectively.

Note that the interpretation of a bounded formula is not necessarily equivalent to a bounded

formula. Nevertheless, the interpretation of a sharply bounded formula is equivalent to a

bounded formula since we can prove

PSeq(x) ∧ x ≤C C|.|(tC) → x ≤ SqBd(|Σ(tC)|,Σ(tC)) .

Theorem 1 If ϕ(a1, . . . , an) is provable in S0
2+ , then

PSeq(a1) ∧ . . . ∧ PSeq(an) → ϕC(a1, . . . , an)

can be proved in S2.

Proof: It suffices to prove the interpretations of the non-logical axioms of S0
2+ in S2. The

axioms from BASIC and the additional axioms for the function symbols P, . , Count and

MSP are all verified by long but straightforward computations. It remains to show that the

interpretation of every instance of Σb
0 − PIND can be proved, or more general

S2 ⊢ ϕ(0) ∧ ∀x (PSeq(x) ∧ ϕ(C⌊ 1
2

.⌋(x)) → ϕ(x)) → ∀x (PSeq(x) → ϕ(x))

where ϕ(x) is a bounded formula. So suppose

ϕ(0) ∧ ∀x (PSeq(x) ∧ ϕ(C⌊ 1
2
.⌋(x)) → ϕ(x)) .

Suppose furthermore that ∃x (PSeq(x) ∧ ¬ϕ(x)). Then by MIN , which is provable in S2 by

Thm. 2.20 of [Bu], we have

∃x (PSeq(x) ∧ ¬ϕ(x) ∧ ∀y<x(PSeq(y) → ϕ(y))) .

Let this minimal x be a, then since PSeq(a), we also have PSeq(C⌊ 1
2
.⌋(a)), and C⌊ 1

2
.⌋(a) < a,

hence ϕ(C⌊ 1
2
.⌋(a)), and the first assumption leads to a contradiction. ✷ ✷

Let f(x) denote the function ⌊ 1
3x⌋. f can be defined by the open formula

b = f(a) :↔ 3b = a ∨ 3b+ 1 = a ∨ 3b+ 2 = a .

In T 0
2 , integer division ⌊a

b
⌋ can be defined: to prove the existence, use the induction axiom for

the quantifier free formula b · x > Sa.

7

Theorem 2 ∀x ∃y y = f(x) cannot be proved in S0
2+ .

Proof: Suppose S0
2+ ⊢ ∀x ∃y y = f(x), then by Theorem 1

S2 ⊢ ∀x PSeq(x) → ∃y (PSeq(y) ∧ y = Cf (x)) .

Then by Parikh’s Theorem it follows that there is a term t(x) in the language of bounded

arithmetic s.t. in particular

S2 ⊢ ∃y≤ t(a) (PSeq(y) ∧ y = Cf (〈a+ 1〉)) .

But 〈a+ 1〉 = Code(2a+1 − 1), and one easily sees that f(2a+1 − 1) is such that y must be of

the form y = 〈1, . . . , 1〉 with a ones, hence Len(y) = a, so y > 2a. ✷ ✷

Hence T 0
2 is not ∀∃Σb

0-conservative over S0
2+ , and Parikhs Theorem immediately yields

Corollary 3 T 0
2 is not ∀Σb

1-conservative over S0
2+ .

We conjecture that for any number k that is not a power of two, S0
2+ cannot define the function

⌊ 1
k
x⌋. Clearly it would suffice to prove this for k an odd prime number.

S0

2+ and Circuit Complexity

AC0 denotes the class of functions computable by uniform families of polynomial size constant

depth unbounded fan-in circuits. In [Cl], Clote shows that it is reasonable to consider this class

to be equal to Immerman’s class FO, which is known to be equal to the alternating logarithmic

time hierarchy LH (cf. [B-I-S]).

Theorem 4 S0
2+ cannot Σb

1-define every function in AC0.

Proof: According to Clote [Cl], AC0 is the smallest class containing the initial functions

0, 2x, 2x+ 1, projections, |x|, # and Bit and closed under composition and CRN, which is the

following scheme: f is defined by CRN from g , h0, , h1 if hi(x, y) ≤ 1 for i = 0, 1 and every

x, y, and

f(x, 0) = g(x)

f(x, 2y) = 2f(x, y) + h0(x, y) for y > 0

f(x, 2y + 1) = 2f(x, y) + h1(x, y) .

Consider the function f(x) := ⌊ 1
3P (1#x)⌋. P (1#x) = 2|x| − 1 is the number of length |x|

where every bit is 1. Thus f(x) is a number of length |x| − 1 with every second bit set 1, the

remaining bits set 0.

Now this function f can be defined by CRN from g(x) = 0 and h0(x) = h1(x) = |x|mod 2 =

Bit(|x|, 0):

f(0) := 0

f(x) := 2f(⌊
1

2
x⌋) + |⌊

1

2
x⌋|mod 2 for x > 0

8

The same argument as in the proof of Theorem 2 shows that this function f cannot be Σb
1

defined in S0
2+ , since for the crucial numbers b with Code(b) = 〈a + 1〉 for some a we have

f(b) = ⌊ 1
3b⌋. ✷ ✷

On the other hand, multiplication does not belong to AC0 (cf. [Cl]). Hence the Σb
1-definable

functions of S0
2+ seem to correspond to no reasonable complexity class.

References

[B-I-S] Barrington, D. A. M., Immermann, N., Straubing, H.: On uniformity within NC1.

Journal of Computing and Systems Sciences 41, 274–306 (1990)

[Bu] Buss, S. R.: Bounded arithmetic. Napoli: Bibliopolis 1986

[Cl] Clote, P.: Sequential, machine independent characterizations of the parallel complexity

classes ALogT IME, ACk, NCk and NC. In: Buss, S. R., Scott, P. J. (eds.), Feasible

Mathematics, pp. 49–69. Birkhäuser 1990

[K-P-T] Kraj́ıček, J., Pudlák, P., Takeuti, G.: Bounded arithmetic and the polynomial hierar-

chy. Annals of Pure and Applied Logic 52, 143–153 (1991)

[Ta] Takeuti, G.: Sharply bounded arithmetic and the function a . 1. In: Logic and Com-

putation, pp. 281–288. Providence: American Mathematical Society 1990

9

