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Abstrat. The depth hierarhy results for monotone iruits of Raz

and MKenzie [5℄ are extended to the ase of monotone iruits of semi-

unbounded fan-in. It follows that the inlusions NC

i

� SAC

i

� AC

i

are proper in the monotone setting, for every i � 1.

1991 Mathematis Subjet Classi�ation. 68Q17,68Q15.

1. Introdution

We onsider boolean iruits over the basis f^;_g, with gates of arbitrary fan-in

and having negated and positive variables as inputs. A iruit is alledmonotone if

it has no negated inputs; learly, a monotone iruit an only ompute a monotone

boolean funtion.

We all the maximal fan-in of any _-gate (resp. ^-gate) in a iruit C the _-

fan-in (resp. the ^-fan-in) of C. A iruit family has semi-unbounded fan-in if eah

iruit in the family has ^-fan-in 2, but arbitrary _-fan-in. This lass of iruits

was introdued by Venkateswaran [6℄ in order to give a iruit haraterization of

the lass LOGCFL of problems logspae-reduible to ontext-free languages.

Let SAC

i

denote the lass of boolean funtions omputable by semi-unbounded

fan-in iruit families of polynomial size and depth O(log

i

n), so that NC

i

�

SAC

i

� AC

i

. Sine Borodin et al. [1℄ have shown that SAC

i

is losed under

omplementation for every i, this is equal to the lass of funtions omputable by

polynomial size, depth O(log

i

n) iruit families of _-fan-in 2 and unbounded ^-

fan-in. The haraterization given by Venkateswaran [6℄ is that LOGCFL equals

logspae-uniform SAC

1

.
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Monotone iruits of semi-unbounded fan-in were onsidered by Grigni and

Sipser [2℄, who extended the 
(log

2

n) depth lower bound for bounded fan-in

monotone iruits omputing st-onnetivity of Karhmer and Wigderson [3℄ to

monotone iruits with ^-gates of fan-in O(2

n

1�Æ

) for some Æ > 0.

Following Grigni and Sipser [2℄, for a iruit omplexity lass C, we write mC

for the orresponding monotone iruit omplexity lass. In partiular, we denote

by mSAC

i

the lass of funtions omputable by monotone semi-unbounded fan-

in iruits of polynomial size and depth O(log

i

n), and by o-mSAC

i

the dual

lass, with bounded _-fan-in and unbounded ^-fan-in. More generally, we all

a monotone iruit with bounded ^-fan-in and unbounded _-fan-in (or _-fan-in

bounded by a growing funtion of n) an mSAC-iruit, and analogously we de�ne

o-mSAC-iruits.

Reently, Raz and MKenzie [5℄ have shown a tight depth hierarhy for mono-

tone iruits up to a depth of n

�

, for some � > 0. Although this is not stated ex-

pliitely, their proof atually shows that mNC

i

is properly ontained in mSAC

i

,

for every i � 1. In this note, we extend their lower bound to monotone semi-

unbounded fan-in iruits. In partiular, it follows from our result that the lasses

mSAC

i

and o-mSAC

i

are inomparable for every i � 1, and thus we get proper

inlusions between the lasses in the following diagram:

mSAC

i

mNC

i

�

�

mAC

i

�

o-mSAC

i

�

Our main result is the following theorem.

Theorem 1.1. There are �; Æ > 0 suh that for every funtion d(n) � O(n

�

), there

is a monotone boolean funtion f omputable by mSAC-iruits of depth O(d(n))

and size n

O(1)

, suh that o-mSAC-iruits of ^-fan-in O(2

n

Æ

) omputing f require

depth 
(d(n) logn).

By onsidering the funtions g(x

1

; : : : ; x

n

) = f(�x

1

; : : : ; �x

n

) dual to the funtions

f in the theorem, we an easily get a separation of the depth omplexity of o-

mSAC from that of mSAC iruits in the opposite diretion.

Corollary 1.2. For �; Æ the same as in Theorem 1.1, and every funtion d(n) �

O(n

�

), there is a monotone boolean funtion g omputable by o-mSAC-iruits

of depth O(d(n)) and size n

O(1)

, suh that mSAC-iruits of _-fan-in O(2

n

Æ

)

omputing g require depth 
(d(n) logn).

An obvious problem left open is to separate mAC

i

from mNC

i+1

. The notion

of asymmetri ommuniation omplexity introdued below probably provides the

right framework to attak this problem, but it would require a non-trivial extension

of the lower bound method of Raz and MKenzie [5℄ and the present note.
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2. Asymmetri Communiation Complexity

The main tool for proving depth lower bounds for monotone iruits is the or-

respondene between iruit depth and ommuniation omplexity of searh prob-

lems, �rst used by Karhmer and Wigderson [3℄. An exellent detailed exposition

of this orrespondene an be found in the book by Kushilevitz and Nisan [4℄.

Let f be a monotone boolean funtion. If x; y are suh that f(x) = 1 and

f(y) = 0, then there must be an index i suh that x

i

= 1 and y

i

= 0. This fat

an be formulated as a searh problem, the Karhmer-Wigderson game, named

after the paper [3℄ where it was �rst used.

De�nition 2.1. For a monotone n-ary boolean funtion f , the Karhmer-Wigderson

game KW

f

is the searh problem de�ned as follows:

� X = f

�1

[1℄ and Y = f

�1

[0℄.

� KW

f

� X � Y � [n℄ is de�ned by

(x; y; i) 2 KW

f

i� x

i

= 1 ^ y

i

= 0 :

The importane of the Karhmer-Wigderson game stems from the fat that its

ommuniation omplexity is exatly the minimal depth of a monotone iruit

omputing f [3℄. This fat an be generalized to iruits with gates of unbounded

fan-in by allowing the transmission of several bits at unit ost.

An (�; �)-protool is a generalized ommuniation protool, where Alie may

send up to � bits, and Bob may send up to � bits in one step. Formally we de�ne:

De�nition 2.2. An (�; �)-protool P over X � Y with range Z is a tree, where

eah internal node � is either labeled by a funtion a

�

: X ! f0; 1g

d

�

with 1 �

d

�

� �, or by a funtion b

�

: Y ! f0; 1g

d

�

with 1 � d

�

� �. The node � has

2

d

�

sons, and the edges going from � to these sons are labeled by the elements of

f0; 1g

d

�

. Eah leaf is labeled by an element z 2 Z.

The value P (x; y) of P on input (x; y) 2 X � Y is the label on the leaf reahed

by the walk that starts at the root and

� at a node � labeled by a

�

, follows the edge labeled a

�

(x),

� at a node � labeled by b

�

, follows the edge labeled b

�

(y).

The ost of the protool is the height of the tree.

A protool P solves a searh problem R � X � Y � Z, if for every input

(x; y) 2 X � Y , we have (x; y; P (x; y)) 2 R. The asymmetri ommuniation

omplexity 

(�;�)

(R) is the minimal ost of any (�; �)-protool that solves R.

We an now state the orrespondene between the depth of semi-unbounded

fan-in iruits and asymmetri ommuniation omplexity.

Lemma 2.3. Let C be a monotone iruit of depth d, with _-fan-in r and ^-fan-in

s omputing f . Then there is a (dlog re; dlog se)-protool solving KW

f

with ost

at most d.

Proof. Let g be a gate in C with g(x) = 1 and g(y) = 0 for some inputs x and y.

If g is an _, then g

0

(y) = 0 holds for every gate g

0

entering g. Also, g

0

(x) = 1 holds
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for at least one of those gates, and Alie an tell Bob for whih by ommuniating

at most dlog re bits. Symmetrially, if g is an ^, Bob an ommuniate up to

dlog se bits to tell Alie for whih gate g

0

entering g it holds that g

0

(x) = 1 and

g

0

(y) = 0.

This way, given inputs x; y with C(x) = 1 and C(y) = 0, they an �nd a path

from the output to an input, suh that for every gate g on the path g(x) = 1 and

g(y) = 0 holds, so in partiular this holds for the input x

i

that was reahed. The

ost of this protool is the depth d of the iruit. �

The opposite diretion also holds; sine we do not make use of this diretion,

we omit the proof, whih is an easy generalization of the fan-in 2 ase.

Lemma 2.4. If there is an (�; �)-protool with ost  solving KW

f

, then f an

be omputed by a monotone iruit of _-fan-in 2

�

and ^-fan-in 2

�

of depth .

3. DART games and strutured protools

The main result in [5℄ is derived from a general theorem about the ommunia-

tion omplexity of a ertain lass of searh problems, the so-alled DART games.

We generalize this to the ase of asymmetri ommuniation omplexity, where

Bob is allowed to ommuniate several bits in one round.

The lass of searh problems DART(m; k), for m; k 2 N, is de�ned as follows.

Any DNF tautology D = C

1

_ : : : _C

t

in variables z

1

; : : : ; z

k

gives rise to a searh

problem, where the input is an assignment � to the variables ~z, and the question

is to �nd one of the terms C

i

of D that is satis�ed by �.

From this DNF searh problem, we de�ne a ommuniation problem as follows:

The set X of inputs to Alie is [m℄

k

, the set of k-tuples x = (x

1

; : : : ; x

k

) of elements

of [m℄. The set Y of inputs to Bob is (2

[m℄

)

k

, i.e., eah input y 2 Y is a k-tuple

(y

1

; : : : ; y

k

) of olorings y

i

: [m℄ ! f0; 1g. From two inputs x 2 X and y 2 Y , an

assignment � is de�ned by �(z

i

) := y

i

(x

i

). This assignment is taken as input to

the DNF searh problem, i.e., given inputs x and y, Alie and Bob have to �nd a

term in D that is satis�ed by the so de�ned assignment �.

A strutured protool is a ommuniation protool for solving a DART(m; k)

searh problem, where in eah round, Alie reveals the value x

i

for some i, and

Bob replies with y

i

(x

i

). The strutured ommuniation omplexity s(R) of R 2

DART(m; k) is the minimal number of rounds in a strutured protool solving R.

Theorem 3.1. For every R 2 DART(m; k), where m � k

14

, and every � �

m

1

14

logm

,



(1;�)

(R) � s(R) �
(logm) :

The proof of the theorem is similar to the proof of the main theorem in [5℄,

therefore we do not give all the details, but only those parts that require modi�-

ation. We prove a more general statement about the omplexity of DART games

on restrited domains.
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To a suh a restrited DART game, one of two operations is applied to the

following e�et. The �rst operation makes the domain smaller to redue the

asymmetri ommuniation omplexity, the other modi�es the DART game it-

self to derease its strutured omplexity, while the asymmetri ommuniation

omplexity remains equal. Assuming that the asymmetri ommuniation om-

plexity is too small, these operations an be performed alternatingly to obtain

a ontradition. Whih of the two operations is to be applied is determined by

ertain ombinatorial properties of the domain, whih are de�ned next.

Let A � [m℄

k

and 1 � j � k. For x 2 [m℄

k�1

, let

deg

j

(x;A) :=

�

�

�

f � 2 [m℄ ; (x

1

; : : : ; x

j�1

; �; x

j

; : : : ; x

k�1

) 2 A g

�

�

�

:

Then we de�ne

A[j℄ :=

�

x 2 [m℄

k�1

; deg

j

(x;A) > 0

	

avdeg

j

(A) :=

jAj

jA[j℄j

Thikness(A) := min

1�j�k

min

x2A[j℄

deg

j

(x;A) :

The following lemmas about these notions were proved in [5℄:

Lemma 3.2. For every A

0

� A and 1 � j � k,

avdeg

j

(A

0

) �

jA

0

j

jAj

avdeg

j

(A) (1)

Thikness(A[j℄) � Thikness(A) (2)

Lemma 3.3. If there is 0 < Æ < 1 suh that for every 1 � j � k, avdeg

j

(A) � Æm,

then for every � > 0 there is A

0

� A with jA

0

j � (1� �)jAj and

Thikness(A

0

) �

�Æm

k

:

In partiular, setting � =

1

2

and Æ = 4m

�

1

14

, we get:

Corollary 3.4. If m � k

14

and for every 1 � j � k, avdeg

j

(A) � 4m

13

14

, then

there is A

0

� A with jA

0

j �

1

2

jAj and Thikness(A) � m

11

14

.

For R 2 DART(m; k) and A � X , B � Y , let 

(1;�)

(R;A;B) denote the

minimal ost of a (1; �)-protool solving R restrited to the domain A�B.

De�nition 3.5. Let m 2 N be given. A triple (R;A;B) is alled an (�; Æ; `)-game,

if the following hold.

� R 2 DART(m; k) for some k � m

1

14

, with s(R) � `

� A � X = [m℄

k

with jAj � 2

��

jX j and Thikness(A) � m

11

14

.

� B � Y = (2

[m℄

)

k

with jBj � 2

�Æ

jY j.
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Lemma 3.6. Let (R;A;B) be an (�; Æ; `)-game, and Æ < 8m

13

14

. If for all 1 � j �

k, avdeg

j

(A) � 8m

13

14

, then there is (R

0

; A

0

; B

0

), whih is either an (�+2; Æ; `)-game

or an (�; Æ + �; `)-game, with



(1;�)

(R

0

; A

0

; B

0

) � 

(1;�)

(R;A;B)� 1 :

Proof. As in [5℄, we �rst prove that 

(1;�)

(R;A;B) > 0. Assume otherwise,

then there is a term in the DNF tautology de�ning R whih is satis�ed for every

input (x; y) 2 A � B. Therefore y

j

(x

j

) is onstant for at least one j � k. If 

denotes the number of possible values of x

j

in elements of A, then this implies that

jBj � 2

mk�

. On the other hand, jBj � 2

mk�Æ

, hene it follows that Æ � , but

from avdeg

j

(A) � 8m

13

14

we have  � 8m

13

14

, so this ontradits the assumption.

Now let an optimal (1; �)-protool P solving R over A�B be given. The ase

where Alie sends the �rst bit an be treated as in [5℄: we partition A = A

0

[ A

1

aording to the value of this bit, then R restrited to A

i

�B for i = 0; 1 is solved

by the sub-protool of P following this transmission.

W.l.o.g. we assume jA

0

j �

1

2

jAj, hene by Lemma 3.2, avdeg

j

(A

0

) � 4m

13

14

for

every j, and therefore Corollary 3.4 yields a subset A

0

� A

0

with jA

0

j �

1

4

jAj with

Thikness(A

0

) � m

11

14

. Thus (R;A

0

; B) is an (�+ 2; Æ; `)-game.

Otherwise, Bob sends the �rst message of d � � bits, and we an partition B

aording to this message as B = B

0

[ : : : [ B

2

d

�1

. Now for some i � 2

d

� 1, we

have jB

i

j � 2

�d

jBj � 2

�Æ�d

jY j � 2

�Æ��

jY j, and the sub-protool of P following

Bob's transmission solves R restrited to A�B

i

, thus (R;A;B

i

) is an (�; Æ+�; `)-

game. �

Lemma 3.7. Let (R;A;B) be an (�; Æ; `)-game with ` � 1. If for some 1 � j � k,

avdeg

j

(A) < 8m

13

14

, then there is an (� + 3�

logm

14

; Æ + 1; `� 1)-game (R

0

; A

0

; B

0

)

with



(1;�)

(R

0

; A

0

; B

0

) � 

(1;�)

(R;A;B) :

The proof of this lemma an be taken without hanges from [5℄, only the num-

bers have to be adjusted to give a slightly better bound. We therefore omit the

proof. Now we an �nish the proof of Theorem 3.1.

Proof of Theorem 3.1. We show that for every (�; Æ; `)-game (R;A;B), with Æ �

m

1

7

, and every � �

m

1

14

logm

,



(1;�)

(R;A;B) � ` �

h

logm

28

�

3

2

�

1

�

i

�

�

2

�

Æ

�

(3)

The theorem follows sine R itself is an (�; Æ; `) game (R;X; Y ) with � = Æ = 0 and

` = s(R).

We prove (3) by indution. Assume indutively that (3) holds for all (�

0

; Æ

0

; `

0

)-

games where either `

0

< `, or `

0

= ` and Æ

0

> Æ, or `

0

= `, Æ

0

= Æ and �

0

> �. Let
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(R;A;B) be an (�; Æ; `)-game with



(1;�)

(R;A;B) < ` �

h

logm

28

�

3

2

�

1

�

i

�

�

2

�

Æ

�

:

Now if avdeg

j

(A) � 8m

13

14

for every 1 � j � k, then by Lemma 3.6 there is either

an (�+ 2; Æ; `)-game (R

0

; A

0

; B

0

) with



(1;�)

(R

0

; A

0

; B

0

) � 

(1;�)

(R;A;B)� 1

< ` �

h

logm

28

�

3

2

�

1

�

i

�

�+ 2

2

�

Æ

�

or there is an (�; Æ + �; `)-game (R

0

; A

0

; B

0

) with



(1;�)

(R

0

; A

0

; B

0

) � 

(1;�)

(R;A;B)� 1

< ` �

h

logm

28

�

3

2

�

1

�

i

�

�

2

�

Æ + �

�

both ontraditing the indutive assumption.

Otherwise there is 1 � j � k with avdeg

j

(A) < 8m

13

14

, and by Lemma 3.7 there

is an (�+ 3�

logm

14

; Æ + 1; `� 1)-game (R

0

; A

0

; B

0

) with



(1;�)

(R

0

; A

0

; B

0

) � 

(1;�)

(R;A;B) < ` �

h

logm

28

�

3

2

�

1

�

i

�

�

2

�

Æ

�

= (`� 1) �

h

logm

28

�

3

2

�

1

�

i

�

�+ 3�

logm

14

2

�

Æ + 1

�

in ontradition to the indutive assumption.

The indution base is trivial for ` = 0, and for Æ = m

1

7

we get

` �

h

logm

28

�

3

2

�

1

�

i

�

�

2

�

Æ

�

� m

1

14

h

logm� 42

28

�

logm

m

1

14

i

�

m

1

7

logm

m

1

14

�

m

1

14

(logm� 42)

28

� logm�m

1

14

logm

whih is � 0 for large m, hene (3) holds trivially. Also, the right hand side of (3)

is � 0 for � �

1

14

m

1

14

logm � 2 logm� 3, hene the indution base also holds for

large �.

1

�

4. Appliation

For d 2 N, let Pyr

d

:= f (i; j) ; 1 � j � i � d g be the pyramid of depth d.

In [5℄, the searh problem PyrGen(m; d) 2 DART(m;

�

d+1

2

�

) is de�ned as follows:

1

Note that this last ase was omitted from the proof in [5℄.
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The indies 1; : : : ;

�

d+1

2

�

are interpreted as elements of Pyr

d

, and we piture

them as laid out in a pyramidal form with (1; 1) at the top and (d; j), 1 � j � d

at the bottom. The goal is to �nd one of the following situations:

� y

1;1

(x

1;1

) = 0.

� y

i;j

(x

i;j

) = 1 and y

i+1;j

(x

i+1;j

) = y

i+1;j+1

(x

i+1;j+1

) = 0 for some (i; j) 2

Pyr

d�1

.

� y

d;j

(x

d;j

) = 1 for some j � d.

The following lower bound on the strutured ommuniation omplexity of

PyrGen(m; d) was proved in [5℄.

Lemma 4.1. s(PyrGen(m; d)) � d.

By Theorem 3.1, we thus obtain a lower bound on the asymmetri ommunia-

tion omplexity of PyrGen(m; d).

Corollary 4.2. For m � d

28

and � � m

1

14

= logm,



(1;�)

(PyrGen(m; d)) � 
(d logm) :

Next we de�ne a property of monotone boolean funtions of n

3

inputs t

a;b;

for

a; b;  2 [n℄. The input

~

t is viewed as the de�nition of a formal system T , where the

formulas are the elements of [n℄, the only axiom is 1 and eah input bit t

a;b;

= 1

de�nes an inferene rule a; b ` .

We say that an input

~

t allows a depth d pyramidal derivation if there is a

derivation of n in T of a speial form, where the formulas an be arranged in

a pyramid of depth d suh that eah formula is inferred from the two formulas

below it. Formally,

~

t allows a depth d pyramidal derivation if and only if there is

a mapping � : Pyr

d

! [n℄ suh that the following onditions hold:

� 1; 1 ` �(d; j) for every 1 � j � d.

� �(i+ 1; j); �(i+ 1; j + 1) ` �(i; j) for every (i; j) 2 Pyr

d�1

.

� �(1; 1); �(1; 1) ` n.

We say that an input

~

t is separable if there is a oloring � : [n℄ ! f0; 1g suh

that �(1) = 0, �(n) = 1 and all inferene rules in T preserve the olor 0, i.e., if

�(a) = �(b) = 0 and a; b ` , then �() = 0.

Finally, a funtion f is alled d-pyramidal, if f(

~

t) = 1 for all inputs t that allow

a depth d pyramidal derivation, and f(

~

t) = 0 for all

~

t that are separable.

Proposition 4.3. There is a d-pyramidal funtion that an be omputed by an

mSAC iruit of polynomial size, _-fan-in n

2

and depth 3d+ 3.

Proof. The funtion f deides whether n has a tree-like derivation of depth d in

the formal system T de�ned by the input

~

t. For eah i 2 [d℄ and  2 [n℄, we de�ne

a iruit D(i; ) that deides whether  has a derivation of depth i. These iruits

are de�ned indutively by

� D(1; ) = 1 if  an be derived immediately from the axiom 1, thus D(1; )

is (1; 1 ` ), i.e., the variable t

1;1;

.
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� for i � 2, D(i; ) = 1 if  an be inferred from some a and b that have

derivations of depth i� 1, i.e., D(i; ) is

_

a;b2[n℄

(a; b ` ) ^D(i� 1; a) ^D(i� 1; b) :

Finally, the iruit omputing f(

~

t) is

W

2[n℄

(;  ` n)^D(d; ). Obviously, the size,

depth and fan-in of this iruit are as laimed, and the funtion f it omputes is

d-pyramidal. �

Lemma 4.4. For every m; d; � and n := m

�

d+1

2

�

+ 2, any monotone d-pyramidal

funtion f of n

3

inputs satis�es



(1;�)

(PyrGen(m; d)) � 

(1;�)

(KW

f

) :

Proof. We redue the searh problem PyrGen(m; d) to the Karhmer-Wigderson

game for the funtion f , in fat, this is exatly the redution to KW

Gen

used in [5℄.

From their inputs x and y to PyrGen(m; d), Alie and Bob ompute inputs

~

t

and ~u, respetively, toKW

f

without any ommuniation, suh that from a solution

ofKW

f

for these inputs one an immediately read o� a solution of PyrGen(m; d).

We interpret the elements between 2 and n� 1 as triples (i; j; k), where (i; j) 2

Pyr

d

and k 2 [m℄. Alie omputes from her input x : Pyr

d

! [m℄ an input

~

t

that allows a depth d pyramidal derivation by setting the following, where a

i;j

:=

(i; j; x

i;j

).

1; 1 ` a

d;j

for 1 � j � d

a

1;1

; a

1;1

` n

a

i+1;j

; a

i+1;j+1

` a

i;j

for (i; j) 2 Pyr

d�1

Sine f is d-pyramidal, f(

~

t) = 1.

Similarly, Bob omputes from his input y : Pyr

d

! 2

[m℄

a oloring � of [n℄

by setting �(1) = 0, �(n) = 1 and �((i; j; k)) = y

i;j

(k). From this oloring, he

omputes a separable input ~u with f(~u) = 0 by setting a; b `  for all triples

a; b;  2 [n℄ exept for those with �() = 1 and �(a) = �(b) = 0.

A solution of the Karhmer-Wigderson game for f is a triple (a; b; ) suh that

a; b `  in

~

t and a; b 6`  in ~u. This means that �(a) = �(b) = 0 and �() = 1, and

by therefore one of the following ases holds:

� a = b = 1 and  = a

d;j

for some j � d, and hene y

d;j

(x

d;j

) = 1.

�  = n and a = b = a

1;1

, and therefore y

1;1

(x

1;1

) = 0.

� a = a

i+1;j

, b = a

i+1;j+1

and  = a

i;j

, in whih ase we have y

i;j

(x

i;j

) = 1,

and y

i+1;j

(x

i+1;j

) = y

i+1;j+1

(x

i+1;j+1

) = 0.

In either ase, the players have found a solution to PyrGen(m; d) without any

additional ommuniation. �
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With this information, we get a lower bound for o-mSAC iruits omputing

a d-pyramidal funtion.

Proposition 4.5. Let m � d

28

and n :=

�

d+1

2

�

m + 2. Any o-mSAC iruit

of ^-fan-in 2

m

1

14

= logm

omputing a d-pyramidal funtion f of n

3

inputs requires

depth 
(d logm).

Proof. Let � :=

m

1

14

logm

. By Lemma 4.4 and Corollary 4.2, we get



(1;�)

(KW

f

) � 
(d logm) ;

and hene by Lemma 2.3, a o-mSAC iruit of ^-fan-in 2

�

omputing f requires

depth 
(d logm). �

Finally, this lower bound together with the upper bound of Proposition 4.3

proves Theorem 1.1.
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