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Abstra
t. The depth hierar
hy results for monotone 
ir
uits of Raz

and M
Kenzie [5℄ are extended to the 
ase of monotone 
ir
uits of semi-

unbounded fan-in. It follows that the in
lusions NC

i

� SAC

i

� AC

i

are proper in the monotone setting, for every i � 1.

1991 Mathemati
s Subje
t Classi�
ation. 68Q17,68Q15.

1. Introdu
tion

We 
onsider boolean 
ir
uits over the basis f^;_g, with gates of arbitrary fan-in

and having negated and positive variables as inputs. A 
ir
uit is 
alledmonotone if

it has no negated inputs; 
learly, a monotone 
ir
uit 
an only 
ompute a monotone

boolean fun
tion.

We 
all the maximal fan-in of any _-gate (resp. ^-gate) in a 
ir
uit C the _-

fan-in (resp. the ^-fan-in) of C. A 
ir
uit family has semi-unbounded fan-in if ea
h


ir
uit in the family has ^-fan-in 2, but arbitrary _-fan-in. This 
lass of 
ir
uits

was introdu
ed by Venkateswaran [6℄ in order to give a 
ir
uit 
hara
terization of

the 
lass LOGCFL of problems logspa
e-redu
ible to 
ontext-free languages.

Let SAC

i

denote the 
lass of boolean fun
tions 
omputable by semi-unbounded

fan-in 
ir
uit families of polynomial size and depth O(log

i

n), so that NC

i

�

SAC

i

� AC

i

. Sin
e Borodin et al. [1℄ have shown that SAC

i

is 
losed under


omplementation for every i, this is equal to the 
lass of fun
tions 
omputable by

polynomial size, depth O(log

i

n) 
ir
uit families of _-fan-in 2 and unbounded ^-

fan-in. The 
hara
terization given by Venkateswaran [6℄ is that LOGCFL equals

logspa
e-uniform SAC

1

.
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Monotone 
ir
uits of semi-unbounded fan-in were 
onsidered by Grigni and

Sipser [2℄, who extended the 
(log

2

n) depth lower bound for bounded fan-in

monotone 
ir
uits 
omputing st-
onne
tivity of Kar
hmer and Wigderson [3℄ to

monotone 
ir
uits with ^-gates of fan-in O(2

n

1�Æ

) for some Æ > 0.

Following Grigni and Sipser [2℄, for a 
ir
uit 
omplexity 
lass C, we write mC

for the 
orresponding monotone 
ir
uit 
omplexity 
lass. In parti
ular, we denote

by mSAC

i

the 
lass of fun
tions 
omputable by monotone semi-unbounded fan-

in 
ir
uits of polynomial size and depth O(log

i

n), and by 
o-mSAC

i

the dual


lass, with bounded _-fan-in and unbounded ^-fan-in. More generally, we 
all

a monotone 
ir
uit with bounded ^-fan-in and unbounded _-fan-in (or _-fan-in

bounded by a growing fun
tion of n) an mSAC-
ir
uit, and analogously we de�ne


o-mSAC-
ir
uits.

Re
ently, Raz and M
Kenzie [5℄ have shown a tight depth hierar
hy for mono-

tone 
ir
uits up to a depth of n

�

, for some � > 0. Although this is not stated ex-

pli
itely, their proof a
tually shows that mNC

i

is properly 
ontained in mSAC

i

,

for every i � 1. In this note, we extend their lower bound to monotone semi-

unbounded fan-in 
ir
uits. In parti
ular, it follows from our result that the 
lasses

mSAC

i

and 
o-mSAC

i

are in
omparable for every i � 1, and thus we get proper

in
lusions between the 
lasses in the following diagram:

mSAC

i

mNC

i

�

�

mAC

i

�


o-mSAC

i

�

Our main result is the following theorem.

Theorem 1.1. There are �; Æ > 0 su
h that for every fun
tion d(n) � O(n

�

), there

is a monotone boolean fun
tion f 
omputable by mSAC-
ir
uits of depth O(d(n))

and size n

O(1)

, su
h that 
o-mSAC-
ir
uits of ^-fan-in O(2

n

Æ

) 
omputing f require

depth 
(d(n) logn).

By 
onsidering the fun
tions g(x

1

; : : : ; x

n

) = f(�x

1

; : : : ; �x

n

) dual to the fun
tions

f in the theorem, we 
an easily get a separation of the depth 
omplexity of 
o-

mSAC from that of mSAC 
ir
uits in the opposite dire
tion.

Corollary 1.2. For �; Æ the same as in Theorem 1.1, and every fun
tion d(n) �

O(n

�

), there is a monotone boolean fun
tion g 
omputable by 
o-mSAC-
ir
uits

of depth O(d(n)) and size n

O(1)

, su
h that mSAC-
ir
uits of _-fan-in O(2

n

Æ

)


omputing g require depth 
(d(n) logn).

An obvious problem left open is to separate mAC

i

from mNC

i+1

. The notion

of asymmetri
 
ommuni
ation 
omplexity introdu
ed below probably provides the

right framework to atta
k this problem, but it would require a non-trivial extension

of the lower bound method of Raz and M
Kenzie [5℄ and the present note.



MONOTONE SEMI-UNBOUNDED FAN-IN CIRCUITS 3

2. Asymmetri
 Communi
ation Complexity

The main tool for proving depth lower bounds for monotone 
ir
uits is the 
or-

responden
e between 
ir
uit depth and 
ommuni
ation 
omplexity of sear
h prob-

lems, �rst used by Kar
hmer and Wigderson [3℄. An ex
ellent detailed exposition

of this 
orresponden
e 
an be found in the book by Kushilevitz and Nisan [4℄.

Let f be a monotone boolean fun
tion. If x; y are su
h that f(x) = 1 and

f(y) = 0, then there must be an index i su
h that x

i

= 1 and y

i

= 0. This fa
t


an be formulated as a sear
h problem, the Kar
hmer-Wigderson game, named

after the paper [3℄ where it was �rst used.

De�nition 2.1. For a monotone n-ary boolean fun
tion f , the Kar
hmer-Wigderson

game KW

f

is the sear
h problem de�ned as follows:

� X = f

�1

[1℄ and Y = f

�1

[0℄.

� KW

f

� X � Y � [n℄ is de�ned by

(x; y; i) 2 KW

f

i� x

i

= 1 ^ y

i

= 0 :

The importan
e of the Kar
hmer-Wigderson game stems from the fa
t that its


ommuni
ation 
omplexity is exa
tly the minimal depth of a monotone 
ir
uit


omputing f [3℄. This fa
t 
an be generalized to 
ir
uits with gates of unbounded

fan-in by allowing the transmission of several bits at unit 
ost.

An (�; �)-proto
ol is a generalized 
ommuni
ation proto
ol, where Ali
e may

send up to � bits, and Bob may send up to � bits in one step. Formally we de�ne:

De�nition 2.2. An (�; �)-proto
ol P over X � Y with range Z is a tree, where

ea
h internal node � is either labeled by a fun
tion a

�

: X ! f0; 1g

d

�

with 1 �

d

�

� �, or by a fun
tion b

�

: Y ! f0; 1g

d

�

with 1 � d

�

� �. The node � has

2

d

�

sons, and the edges going from � to these sons are labeled by the elements of

f0; 1g

d

�

. Ea
h leaf is labeled by an element z 2 Z.

The value P (x; y) of P on input (x; y) 2 X � Y is the label on the leaf rea
hed

by the walk that starts at the root and

� at a node � labeled by a

�

, follows the edge labeled a

�

(x),

� at a node � labeled by b

�

, follows the edge labeled b

�

(y).

The 
ost of the proto
ol is the height of the tree.

A proto
ol P solves a sear
h problem R � X � Y � Z, if for every input

(x; y) 2 X � Y , we have (x; y; P (x; y)) 2 R. The asymmetri
 
ommuni
ation


omplexity 



(�;�)

(R) is the minimal 
ost of any (�; �)-proto
ol that solves R.

We 
an now state the 
orresponden
e between the depth of semi-unbounded

fan-in 
ir
uits and asymmetri
 
ommuni
ation 
omplexity.

Lemma 2.3. Let C be a monotone 
ir
uit of depth d, with _-fan-in r and ^-fan-in

s 
omputing f . Then there is a (dlog re; dlog se)-proto
ol solving KW

f

with 
ost

at most d.

Proof. Let g be a gate in C with g(x) = 1 and g(y) = 0 for some inputs x and y.

If g is an _, then g

0

(y) = 0 holds for every gate g

0

entering g. Also, g

0

(x) = 1 holds
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for at least one of those gates, and Ali
e 
an tell Bob for whi
h by 
ommuni
ating

at most dlog re bits. Symmetri
ally, if g is an ^, Bob 
an 
ommuni
ate up to

dlog se bits to tell Ali
e for whi
h gate g

0

entering g it holds that g

0

(x) = 1 and

g

0

(y) = 0.

This way, given inputs x; y with C(x) = 1 and C(y) = 0, they 
an �nd a path

from the output to an input, su
h that for every gate g on the path g(x) = 1 and

g(y) = 0 holds, so in parti
ular this holds for the input x

i

that was rea
hed. The


ost of this proto
ol is the depth d of the 
ir
uit. �

The opposite dire
tion also holds; sin
e we do not make use of this dire
tion,

we omit the proof, whi
h is an easy generalization of the fan-in 2 
ase.

Lemma 2.4. If there is an (�; �)-proto
ol with 
ost 
 solving KW

f

, then f 
an

be 
omputed by a monotone 
ir
uit of _-fan-in 2

�

and ^-fan-in 2

�

of depth 
.

3. DART games and stru
tured proto
ols

The main result in [5℄ is derived from a general theorem about the 
ommuni
a-

tion 
omplexity of a 
ertain 
lass of sear
h problems, the so-
alled DART games.

We generalize this to the 
ase of asymmetri
 
ommuni
ation 
omplexity, where

Bob is allowed to 
ommuni
ate several bits in one round.

The 
lass of sear
h problems DART(m; k), for m; k 2 N, is de�ned as follows.

Any DNF tautology D = C

1

_ : : : _C

t

in variables z

1

; : : : ; z

k

gives rise to a sear
h

problem, where the input is an assignment � to the variables ~z, and the question

is to �nd one of the terms C

i

of D that is satis�ed by �.

From this DNF sear
h problem, we de�ne a 
ommuni
ation problem as follows:

The set X of inputs to Ali
e is [m℄

k

, the set of k-tuples x = (x

1

; : : : ; x

k

) of elements

of [m℄. The set Y of inputs to Bob is (2

[m℄

)

k

, i.e., ea
h input y 2 Y is a k-tuple

(y

1

; : : : ; y

k

) of 
olorings y

i

: [m℄ ! f0; 1g. From two inputs x 2 X and y 2 Y , an

assignment � is de�ned by �(z

i

) := y

i

(x

i

). This assignment is taken as input to

the DNF sear
h problem, i.e., given inputs x and y, Ali
e and Bob have to �nd a

term in D that is satis�ed by the so de�ned assignment �.

A stru
tured proto
ol is a 
ommuni
ation proto
ol for solving a DART(m; k)

sear
h problem, where in ea
h round, Ali
e reveals the value x

i

for some i, and

Bob replies with y

i

(x

i

). The stru
tured 
ommuni
ation 
omplexity s

(R) of R 2

DART(m; k) is the minimal number of rounds in a stru
tured proto
ol solving R.

Theorem 3.1. For every R 2 DART(m; k), where m � k

14

, and every � �

m

1

14

logm

,





(1;�)

(R) � s

(R) �
(logm) :

The proof of the theorem is similar to the proof of the main theorem in [5℄,

therefore we do not give all the details, but only those parts that require modi�-


ation. We prove a more general statement about the 
omplexity of DART games

on restri
ted domains.
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To a su
h a restri
ted DART game, one of two operations is applied to the

following e�e
t. The �rst operation makes the domain smaller to redu
e the

asymmetri
 
ommuni
ation 
omplexity, the other modi�es the DART game it-

self to de
rease its stru
tured 
omplexity, while the asymmetri
 
ommuni
ation


omplexity remains equal. Assuming that the asymmetri
 
ommuni
ation 
om-

plexity is too small, these operations 
an be performed alternatingly to obtain

a 
ontradi
tion. Whi
h of the two operations is to be applied is determined by


ertain 
ombinatorial properties of the domain, whi
h are de�ned next.

Let A � [m℄

k

and 1 � j � k. For x 2 [m℄

k�1

, let

deg

j

(x;A) :=

�

�

�

f � 2 [m℄ ; (x

1

; : : : ; x

j�1

; �; x

j

; : : : ; x

k�1

) 2 A g

�

�

�

:

Then we de�ne

A[j℄ :=

�

x 2 [m℄

k�1

; deg

j

(x;A) > 0

	

avdeg

j

(A) :=

jAj

jA[j℄j

Thi
kness(A) := min

1�j�k

min

x2A[j℄

deg

j

(x;A) :

The following lemmas about these notions were proved in [5℄:

Lemma 3.2. For every A

0

� A and 1 � j � k,

avdeg

j

(A

0

) �

jA

0

j

jAj

avdeg

j

(A) (1)

Thi
kness(A[j℄) � Thi
kness(A) (2)

Lemma 3.3. If there is 0 < Æ < 1 su
h that for every 1 � j � k, avdeg

j

(A) � Æm,

then for every � > 0 there is A

0

� A with jA

0

j � (1� �)jAj and

Thi
kness(A

0

) �

�Æm

k

:

In parti
ular, setting � =

1

2

and Æ = 4m

�

1

14

, we get:

Corollary 3.4. If m � k

14

and for every 1 � j � k, avdeg

j

(A) � 4m

13

14

, then

there is A

0

� A with jA

0

j �

1

2

jAj and Thi
kness(A) � m

11

14

.

For R 2 DART(m; k) and A � X , B � Y , let 



(1;�)

(R;A;B) denote the

minimal 
ost of a (1; �)-proto
ol solving R restri
ted to the domain A�B.

De�nition 3.5. Let m 2 N be given. A triple (R;A;B) is 
alled an (�; Æ; `)-game,

if the following hold.

� R 2 DART(m; k) for some k � m

1

14

, with s

(R) � `

� A � X = [m℄

k

with jAj � 2

��

jX j and Thi
kness(A) � m

11

14

.

� B � Y = (2

[m℄

)

k

with jBj � 2

�Æ

jY j.
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Lemma 3.6. Let (R;A;B) be an (�; Æ; `)-game, and Æ < 8m

13

14

. If for all 1 � j �

k, avdeg

j

(A) � 8m

13

14

, then there is (R

0

; A

0

; B

0

), whi
h is either an (�+2; Æ; `)-game

or an (�; Æ + �; `)-game, with





(1;�)

(R

0

; A

0

; B

0

) � 



(1;�)

(R;A;B)� 1 :

Proof. As in [5℄, we �rst prove that 



(1;�)

(R;A;B) > 0. Assume otherwise,

then there is a term in the DNF tautology de�ning R whi
h is satis�ed for every

input (x; y) 2 A � B. Therefore y

j

(x

j

) is 
onstant for at least one j � k. If 


denotes the number of possible values of x

j

in elements of A, then this implies that

jBj � 2

mk�


. On the other hand, jBj � 2

mk�Æ

, hen
e it follows that Æ � 
, but

from avdeg

j

(A) � 8m

13

14

we have 
 � 8m

13

14

, so this 
ontradi
ts the assumption.

Now let an optimal (1; �)-proto
ol P solving R over A�B be given. The 
ase

where Ali
e sends the �rst bit 
an be treated as in [5℄: we partition A = A

0

[ A

1

a

ording to the value of this bit, then R restri
ted to A

i

�B for i = 0; 1 is solved

by the sub-proto
ol of P following this transmission.

W.l.o.g. we assume jA

0

j �

1

2

jAj, hen
e by Lemma 3.2, avdeg

j

(A

0

) � 4m

13

14

for

every j, and therefore Corollary 3.4 yields a subset A

0

� A

0

with jA

0

j �

1

4

jAj with

Thi
kness(A

0

) � m

11

14

. Thus (R;A

0

; B) is an (�+ 2; Æ; `)-game.

Otherwise, Bob sends the �rst message of d � � bits, and we 
an partition B

a

ording to this message as B = B

0

[ : : : [ B

2

d

�1

. Now for some i � 2

d

� 1, we

have jB

i

j � 2

�d

jBj � 2

�Æ�d

jY j � 2

�Æ��

jY j, and the sub-proto
ol of P following

Bob's transmission solves R restri
ted to A�B

i

, thus (R;A;B

i

) is an (�; Æ+�; `)-

game. �

Lemma 3.7. Let (R;A;B) be an (�; Æ; `)-game with ` � 1. If for some 1 � j � k,

avdeg

j

(A) < 8m

13

14

, then there is an (� + 3�

logm

14

; Æ + 1; `� 1)-game (R

0

; A

0

; B

0

)

with





(1;�)

(R

0

; A

0

; B

0

) � 



(1;�)

(R;A;B) :

The proof of this lemma 
an be taken without 
hanges from [5℄, only the num-

bers have to be adjusted to give a slightly better bound. We therefore omit the

proof. Now we 
an �nish the proof of Theorem 3.1.

Proof of Theorem 3.1. We show that for every (�; Æ; `)-game (R;A;B), with Æ �

m

1

7

, and every � �

m

1

14

logm

,





(1;�)

(R;A;B) � ` �

h

logm

28

�

3

2

�

1

�

i

�

�

2

�

Æ

�

(3)

The theorem follows sin
e R itself is an (�; Æ; `) game (R;X; Y ) with � = Æ = 0 and

` = s

(R).

We prove (3) by indu
tion. Assume indu
tively that (3) holds for all (�

0

; Æ

0

; `

0

)-

games where either `

0

< `, or `

0

= ` and Æ

0

> Æ, or `

0

= `, Æ

0

= Æ and �

0

> �. Let
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(R;A;B) be an (�; Æ; `)-game with





(1;�)

(R;A;B) < ` �

h

logm

28

�

3

2

�

1

�

i

�

�

2

�

Æ

�

:

Now if avdeg

j

(A) � 8m

13

14

for every 1 � j � k, then by Lemma 3.6 there is either

an (�+ 2; Æ; `)-game (R

0

; A

0

; B

0

) with





(1;�)

(R

0

; A

0

; B

0

) � 



(1;�)

(R;A;B)� 1

< ` �

h

logm

28

�

3

2

�

1

�

i

�

�+ 2

2

�

Æ

�

or there is an (�; Æ + �; `)-game (R

0

; A

0

; B

0

) with





(1;�)

(R

0

; A

0

; B

0

) � 



(1;�)

(R;A;B)� 1

< ` �

h

logm

28

�

3

2

�

1

�

i

�

�

2

�

Æ + �

�

both 
ontradi
ting the indu
tive assumption.

Otherwise there is 1 � j � k with avdeg

j

(A) < 8m

13

14

, and by Lemma 3.7 there

is an (�+ 3�

logm

14

; Æ + 1; `� 1)-game (R

0

; A

0

; B

0

) with





(1;�)

(R

0

; A

0

; B

0

) � 



(1;�)

(R;A;B) < ` �

h

logm

28

�

3

2

�

1

�

i

�

�

2

�

Æ

�

= (`� 1) �

h

logm

28

�

3

2

�

1

�

i

�

�+ 3�

logm

14

2

�

Æ + 1

�

in 
ontradi
tion to the indu
tive assumption.

The indu
tion base is trivial for ` = 0, and for Æ = m

1

7

we get

` �

h

logm

28

�

3

2

�

1

�

i

�

�

2

�

Æ

�

� m

1

14

h

logm� 42

28

�

logm

m

1

14

i

�

m

1

7

logm

m

1

14

�

m

1

14

(logm� 42)

28

� logm�m

1

14

logm

whi
h is � 0 for large m, hen
e (3) holds trivially. Also, the right hand side of (3)

is � 0 for � �

1

14

m

1

14

logm � 2 logm� 3, hen
e the indu
tion base also holds for

large �.

1

�

4. Appli
ation

For d 2 N, let Pyr

d

:= f (i; j) ; 1 � j � i � d g be the pyramid of depth d.

In [5℄, the sear
h problem PyrGen(m; d) 2 DART(m;

�

d+1

2

�

) is de�ned as follows:

1

Note that this last 
ase was omitted from the proof in [5℄.
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The indi
es 1; : : : ;

�

d+1

2

�

are interpreted as elements of Pyr

d

, and we pi
ture

them as laid out in a pyramidal form with (1; 1) at the top and (d; j), 1 � j � d

at the bottom. The goal is to �nd one of the following situations:

� y

1;1

(x

1;1

) = 0.

� y

i;j

(x

i;j

) = 1 and y

i+1;j

(x

i+1;j

) = y

i+1;j+1

(x

i+1;j+1

) = 0 for some (i; j) 2

Pyr

d�1

.

� y

d;j

(x

d;j

) = 1 for some j � d.

The following lower bound on the stru
tured 
ommuni
ation 
omplexity of

PyrGen(m; d) was proved in [5℄.

Lemma 4.1. s

(PyrGen(m; d)) � d.

By Theorem 3.1, we thus obtain a lower bound on the asymmetri
 
ommuni
a-

tion 
omplexity of PyrGen(m; d).

Corollary 4.2. For m � d

28

and � � m

1

14

= logm,





(1;�)

(PyrGen(m; d)) � 
(d logm) :

Next we de�ne a property of monotone boolean fun
tions of n

3

inputs t

a;b;


for

a; b; 
 2 [n℄. The input

~

t is viewed as the de�nition of a formal system T , where the

formulas are the elements of [n℄, the only axiom is 1 and ea
h input bit t

a;b;


= 1

de�nes an inferen
e rule a; b ` 
.

We say that an input

~

t allows a depth d pyramidal derivation if there is a

derivation of n in T of a spe
ial form, where the formulas 
an be arranged in

a pyramid of depth d su
h that ea
h formula is inferred from the two formulas

below it. Formally,

~

t allows a depth d pyramidal derivation if and only if there is

a mapping � : Pyr

d

! [n℄ su
h that the following 
onditions hold:

� 1; 1 ` �(d; j) for every 1 � j � d.

� �(i+ 1; j); �(i+ 1; j + 1) ` �(i; j) for every (i; j) 2 Pyr

d�1

.

� �(1; 1); �(1; 1) ` n.

We say that an input

~

t is separable if there is a 
oloring � : [n℄ ! f0; 1g su
h

that �(1) = 0, �(n) = 1 and all inferen
e rules in T preserve the 
olor 0, i.e., if

�(a) = �(b) = 0 and a; b ` 
, then �(
) = 0.

Finally, a fun
tion f is 
alled d-pyramidal, if f(

~

t) = 1 for all inputs t that allow

a depth d pyramidal derivation, and f(

~

t) = 0 for all

~

t that are separable.

Proposition 4.3. There is a d-pyramidal fun
tion that 
an be 
omputed by an

mSAC 
ir
uit of polynomial size, _-fan-in n

2

and depth 3d+ 3.

Proof. The fun
tion f de
ides whether n has a tree-like derivation of depth d in

the formal system T de�ned by the input

~

t. For ea
h i 2 [d℄ and 
 2 [n℄, we de�ne

a 
ir
uit D(i; 
) that de
ides whether 
 has a derivation of depth i. These 
ir
uits

are de�ned indu
tively by

� D(1; 
) = 1 if 
 
an be derived immediately from the axiom 1, thus D(1; 
)

is (1; 1 ` 
), i.e., the variable t

1;1;


.
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� for i � 2, D(i; 
) = 1 if 
 
an be inferred from some a and b that have

derivations of depth i� 1, i.e., D(i; 
) is

_

a;b2[n℄

(a; b ` 
) ^D(i� 1; a) ^D(i� 1; b) :

Finally, the 
ir
uit 
omputing f(

~

t) is

W


2[n℄

(
; 
 ` n)^D(d; 
). Obviously, the size,

depth and fan-in of this 
ir
uit are as 
laimed, and the fun
tion f it 
omputes is

d-pyramidal. �

Lemma 4.4. For every m; d; � and n := m

�

d+1

2

�

+ 2, any monotone d-pyramidal

fun
tion f of n

3

inputs satis�es





(1;�)

(PyrGen(m; d)) � 



(1;�)

(KW

f

) :

Proof. We redu
e the sear
h problem PyrGen(m; d) to the Kar
hmer-Wigderson

game for the fun
tion f , in fa
t, this is exa
tly the redu
tion to KW

Gen

used in [5℄.

From their inputs x and y to PyrGen(m; d), Ali
e and Bob 
ompute inputs

~

t

and ~u, respe
tively, toKW

f

without any 
ommuni
ation, su
h that from a solution

ofKW

f

for these inputs one 
an immediately read o� a solution of PyrGen(m; d).

We interpret the elements between 2 and n� 1 as triples (i; j; k), where (i; j) 2

Pyr

d

and k 2 [m℄. Ali
e 
omputes from her input x : Pyr

d

! [m℄ an input

~

t

that allows a depth d pyramidal derivation by setting the following, where a

i;j

:=

(i; j; x

i;j

).

1; 1 ` a

d;j

for 1 � j � d

a

1;1

; a

1;1

` n

a

i+1;j

; a

i+1;j+1

` a

i;j

for (i; j) 2 Pyr

d�1

Sin
e f is d-pyramidal, f(

~

t) = 1.

Similarly, Bob 
omputes from his input y : Pyr

d

! 2

[m℄

a 
oloring � of [n℄

by setting �(1) = 0, �(n) = 1 and �((i; j; k)) = y

i;j

(k). From this 
oloring, he


omputes a separable input ~u with f(~u) = 0 by setting a; b ` 
 for all triples

a; b; 
 2 [n℄ ex
ept for those with �(
) = 1 and �(a) = �(b) = 0.

A solution of the Kar
hmer-Wigderson game for f is a triple (a; b; 
) su
h that

a; b ` 
 in

~

t and a; b 6` 
 in ~u. This means that �(a) = �(b) = 0 and �(
) = 1, and

by therefore one of the following 
ases holds:

� a = b = 1 and 
 = a

d;j

for some j � d, and hen
e y

d;j

(x

d;j

) = 1.

� 
 = n and a = b = a

1;1

, and therefore y

1;1

(x

1;1

) = 0.

� a = a

i+1;j

, b = a

i+1;j+1

and 
 = a

i;j

, in whi
h 
ase we have y

i;j

(x

i;j

) = 1,

and y

i+1;j

(x

i+1;j

) = y

i+1;j+1

(x

i+1;j+1

) = 0.

In either 
ase, the players have found a solution to PyrGen(m; d) without any

additional 
ommuni
ation. �
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With this information, we get a lower bound for 
o-mSAC 
ir
uits 
omputing

a d-pyramidal fun
tion.

Proposition 4.5. Let m � d

28

and n :=

�

d+1

2

�

m + 2. Any 
o-mSAC 
ir
uit

of ^-fan-in 2

m

1

14

= logm


omputing a d-pyramidal fun
tion f of n

3

inputs requires

depth 
(d logm).

Proof. Let � :=

m

1

14

logm

. By Lemma 4.4 and Corollary 4.2, we get





(1;�)

(KW

f

) � 
(d logm) ;

and hen
e by Lemma 2.3, a 
o-mSAC 
ir
uit of ^-fan-in 2

�


omputing f requires

depth 
(d logm). �

Finally, this lower bound together with the upper bound of Proposition 4.3

proves Theorem 1.1.
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