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Abstrat

Using a notion of real ommuniation omplexity reently introdued by J. Kraj���ek,

we prove a lower bound on the depth of monotone real iruits and the size of

monotone real formulas for st-onnetivity. This implies a super-polynomial speed-

up of dag-like over tree-like Cutting Planes proofs.
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Introdution

A monotone real iruit is a iruit omputing with real numbers in whih

every gate omputes a nondereasing binary real funtion. This lass of iruits

was introdued in [10℄. We require that suh a iruit outputs 0 or 1 on every

input of 0's and 1's only. Hene, monotone real iruits are a generalization of

monotone boolean iruits, whih was shown to be stritly more powerful in

[11℄.

The depth and size of a monotone real iruit are de�ned as usual, and we

all it a formula if every gate has fan-out at most 1.

We generalize the lower bounds on the depth of monotone boolean iruits and

the size of monotone boolean formulas for st-onnetivity of [7℄ to monotone

real iruits. By the main result of [10℄, this also implies a super-polynomial

lower bound on the size of tree-like Cutting Planes proofs. Together with an

?
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upper bound from [3℄, this separates tree-like Cutting Planes from their dag-

like ounterparts, answering an open question from [5℄ .

We denote by d

R

(f) the minimal depth of a monotone real iruit omputing

f , and by s

R

(f) the minimal size of a monotone real formula omputing f .

For a natural number n, [n℄ denotes the set f1; : : : ; ng.

Real Communiation Complexity

We reall the notion of real games and real ommuniation omplexity intro-

dued in [8℄. Let U; V be �nite sets. A real game on U; V is played by two

players I and II, where I omputes a funtion f

I

: U � f0; 1g

�

! R and II

omputes a funtion f

II

: V � f0; 1g

�

! R. Given inputs u 2 U , v 2 V , the

players generate a sequene w of bits as follows:

w

0

:= �

w

k+1

:=

8

>

<

>

:

w

k

0 if f

I

(u; w

k

) > f

II

(v; w

k

)

w

k

1 else

Let I be another �nite set, and let R � U � V � I be a multifuntion, i.e.

8u2U 8v2V 9i2I (u; v; i) 2 R. Its real ommuniation omplexity 

R

(R) is

the minimal number k suh that there is a real game on U; V and a funtion

g : f0; 1g

k

! I suh that

8u2U 8v2V (u; v; g(w

k

)) 2 R :

If this holds then we also say that the game in question solves R in k rounds.

Let f : f0; 1g

n

! f0; 1g be a monotone boolean funtion, let U := f

�1

(1) and

V := f

�1

(0), and let the multifuntion R

f

� U � V � [n℄ be de�ned by

(u; v; i) 2 R

f

i� u

i

= 1 and v

i

= 0 :

Then there is a relation between the real ommuniation omplexity of R

f

and

the depth of a monotone real iruit or the size of a monotone real formula

omputing f , similar to the boolean ase:

Lemma 1 (Kraj���ek [8℄) Let f be a monotone boolean funtion. Then



R

(R

f

) � d

R

(f) and 

R

(R

f

) � log

3=2

s

R

(f) :
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PROOF. Let the value at gate G on input u 2 U be greater than the value

at G on input v 2 V . As the funtion omputed by G is nondereasing, the

same must hold for at least one of the gates immediately below G. By playing

the value of, say, the left gate below G on input u and v, respetively, the

players an determine for whih of the two gates this is the ase. Hene given

a iruit of depth k omputing f , the players an �nd an input gate i with

u

i

> v

i

in k rounds. This proves the �rst inequality.

For the seond inequality, let f(x) be a formula of size s with f(u) > f(v).

The players determine a subformula h(x) with

1

3

jf(x)j � jh(x)j <

2

3

jf(x)j,

then play the values h(u) and h(v), respetively. If h(u) > h(v), they ontinue

with the formula h(x). Otherwise let f(x) = f

0

(x; h(x)), then the players

ontinue with the formula f

0

(x; ), where  is the onstant h(u) for player I

and h(v) for player II respetively. After log

3=2

s rounds, the players will have

found an input i with u

i

> v

i

. �

For a monotone boolean funtion f , let min(f) denote the set of minterms of

f , and max(f) the set of maxterms of f . Sine f is monotone, we an represent

these as sets of index sets. We de�ne the relation R

m

f

� min(f)�max(f)� [n℄

by

(p; q; i) 2 R

m

f

i� i 2 p \ q :

Then as in the boolean ase (see [6℄), a real game solving R

f

an be used to

solve R

m

f

, and vie versa, hene we have



R

(R

m

f

) = 

R

(R

f

) :

Let stonn

n

be the monotone funtion on

�

n+2

2

�

variables, representing the

edges of an undireted graph G on the set of nodes N := [n℄ [ fs; tg, that

gives 1 if there is a path in G from s to t, and 0 else. As an example, we shall

give a real game for R

m

stonn

n

, giving an upper bound 

R

(R

m

stonn

n

) = O(log

2

n).

A minterm of stonn

n

is a simple path from s to t, and a maxterm an be

represented by a oloring of N by two olors 0,1 suh that s gets olor 0 and

t gets olor 1. The aim of the game is to �nd a biolored edge in the path.

Letm be the number of the middle node of I's path. For dlogne rounds, player

I keeps playing m, while player II uses binary searh to determine m. After

that, both players know m, and I plays 0 while II plays m's olor, thereby

ommuniating that olor to I. If the olor is 1, then the players repeat this

proedure with the half of the path from s to m, otherwise with the half from

m to t. After at most dlogne repetitions, the length of the urrent path is 1,

hene the players have found a biolored edge.
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We shall show that also 

R

(R

m

stonn

n

) = 
(log

2

n), thus by Lemma 1, monotone

real iruits for stonn

n

have to have depth 
(log

2

n), and monotone real

formulas for stonn

n

are of size n


(log n)

.

The Lower Bound

The proof of the lower bound on 

R

(R

m

stonn

n

) follows losely the proof of the

Karhmer/Wigderson monotone iruit depth lower bound as presented in [2,

setion 5.2℄.

Let a game solving R � U�V � I in k+1 rounds be given. Let �

u

:= f

I

(u; �)

and �

v

:= f

II

(v; �). W.l.o.g. we an assume that �

u

6= �

u

0

for u 6= u

0

2 U and

�

v

6= �

v

0

for v 6= v

0

2 V . Now onsider a matrix whose olumns are indexed by

the �

u

's and whose rows are indexed by the �

v

's, both in inreasing order, and

let the entry in position (�

u

; �

v

) be 0 if �

u

> �

v

and 1 else. Then it is easily

seen that either the upper right d

jU j

2

e � d

jV j

2

e-submatrix is entirely �lled with

0's, or the lower left d

jU j

2

e � d

jV j

2

e-submatrix is entirely �lled with 1's. Hene

there are U

0

� U and V

0

� V with jU

0

j �

1

2

jU j and jV

0

j �

1

2

jV j suh that

for every input (u; v) 2 U

0

� V

0

, the �rst bit played is the same, say b. Hene

there is a game that solves R restrited to U

0

� V

0

in k rounds: pretend that

in the �rst round, the bit b was played, and then ontinue as in the original

game. This motivates the following de�nition:

We all a real game an (n; `; �; Æ)-game of length k, if there is a set U of paths

from s to t of length `+1, represented as vetors in [n℄

`

, and a set V � f0; 1g

[n℄

of olorings with jU j � �n

`

and jV j � Æ2

n

suh that the game solves R

m

stonn

n

restrited to U �V in k rounds. The onsiderations above prove the following

Lemma 2 If there is an (n; `; �; Æ)-game of length k, then there also is an

(n; `;

�

2

;

Æ

2

)-game of length k � 1.

The following lemma is the heart of the argument:

Lemma 3 If there is an (n; `; �; Æ)-game of length k, and r is suh that

100`

�

�

r �

n

100`

and Æ � 2

�

3

4

)

n

r

, then there is an (n� r;

`

2

;

p

�

2

;

rÆ

2n

)-game of length k.

PROOF. De�ne a set of random restritions R

r

as follows: to hoose � 2 R

r

,

�rst hoose a set W

�

� [n℄ of size jW

�

j = r randomly and uniformly, and

then hoose a oloring 

�

: W

�

! f0; 1g randomly and uniformly. Let S

�

:=

fx 2 W

�

; 

�

(x) = 0 g and T

�

:= fx 2 W

�

; 

�

(x) = 1 g. The idea is that �

maps S

�

to s and T

�

to t, and every other node to itself.
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Let U

0

and V

0

be the sets for whih the game solves R

m

stonn

n

, with jU

0

j � �n

`

and jV

0

j � Æ2

n

. De�ne

U

L

:=

�

u 2 [n℄

`

2

;

�

�

�

�

n

u

0

2 [n℄

`

2

; (u; u

0

) 2 U

0

o

�

�

�

�

>

�

4

n

`

2

�

and U

R

analogously. If (u; u

0

) 2 U

0

, then either u 2 U

L

and u

0

2 U

R

, or u =2 U

L

,

or u

0

=2 U

R

. Now at most jU

L

j � jU

R

j elements an be of the �rst type, and there

an be at most n

`

2

�

�

4

n

`

2

=

�

4

n

`

elements of eah of the latter two types. Hene

we get �n

`

� jU

0

j � jU

L

j � jU

R

j +

�

2

n

`

, and thus jU

L

j � jU

R

j �

�

2

n

`

. Therefore

one of U

L

or U

R

has to be of size at least

q

�

2

n

`

2

. W.l.o.g. let it be U

L

.

For a restrition � 2 R

r

, let

U

�

:=

�

u 2 U

L

; u 2 ([n℄ nW

�

)

`

2

and 9u

0

2T

`

2

�

(u; u

0

) 2 U

0

�

V

�

:=

n

v 2 f0; 1g

[n℄nW

�

; (v [ 

�

) 2 V

0

o

We obtain a game solving R

m

stonn

n

restrited to U

�

� V

�

as follows: on input

(u; v) 2 U

�

� V

�

, player I omputes a vetor u

0

2 T

`

2

�

suh that (u; u

0

) 2 U

0

,

then the players play the original game on input ((u; u

0

); (v [ 

�

)). It remains

to show that there is a � 2 R

r

with jU

�

j �

p

�

2

(n� r)

`

2

and jV

�

j �

rÆ

2n

2

n�r

.

Now the same alulations as in [2, setion 5.2℄ show that eah of the inequal-

ities jU

�

j �

p

�

2

(n � r)

`

2

and jV

�

j �

rÆ

2n

2

n�r

holds with probability at least

3

4

.

Hene the probability that both inequalities hold is at least

1

2

. �

Theorem 4 For suÆiently large n, 

R

(R

m

stonn

n

) >

1

100

log

2

n.

PROOF. Suppose there is a game solving R

m

stonn

n

in

1

100

log

2

n rounds, for

some large n, and let ` := n

1

4

. Then in partiular, this is an (n; `;

1

4

n

�

1

10

; 1)-

game. We divide the game in

1

10

logn stages of

1

10

logn rounds eah.

Lemma 2 applied

1

10

logn times then gives us an (n; `;

1

4

n

�

1

5

; n

�

1

10

)-game having

one stage fewer. Sine n is large, the onditions of Lemma 3 are met for r =

p

n,

hene we obtain an (n�

p

n;

`

2

;

1

4

n

�

1

10

;

1

2

n

�

3

5

)-game having one stage fewer that

the original game.

Repeating this for all the

1

10

logn stages yields an (m; `

0

;

1

4

n

�

1

10

; n

�

3

50

log n�

1

10

)-

game of length 0, where m := n �

1

10

logn

p

n and `

0

:= n

3

20

. Now a game of

length 0 gives the same edge for every pair of inputs. But the number of paths

of length `

0

in [m℄ ontaining one partiular edge is at most m

`

0

�1

, whereas

the game has to solve the problem for a set of size

1

4

n

�

1

10

m

`

0

. But for large

5



n, the latter quantity is stritly larger than the former, hene a game solving

R

m

stonn

n

in

1

100

log

2

n rounds annot exist. �

Lemma 1 now gives us the desired lower bound:

Corollary 5 d

R

(stonn

n

) = 
(log

2

n) and s

R

(stonn

n

) = n


(log n)

.

Cutting Planes

Cutting Planes (CP ) are a proof system operating with linear inequalities of

the form

P

i2I

a

i

x

i

� k, where the oeÆients a

i

and k are integers. The rules

of CP are addition of two inequalities, multipliation of an inequality by a

positive integer and the following division rule:

P

i2I

a

i

x

i

� k

P

i2I

a

i

b

x

i

�

l

k

b

m

;

where b is a positive integer that evenly divides all a

i

, i 2 I.

A CP refutation of a set E of inequalities is a derivation of 0 � 1 from the

inequalities in E and the axioms x � 0 and �x � �1 for any variable x, using

the rules of CP . It an be shown that a set of inequalities has a CP -refutation

i� it has no f0; 1g-solution.

Cutting Planes an be used as a refutation system for propositional formulas in

onjuntive normal form, as shown in [4℄: note that a lause

W

i2I

x

i

_

W

j2J

:x

j

is

satis�able i� the inequality

P

i2I

x

i

�

P

j2J

x

j

� 1�jJ j has a f0; 1g-solution. It

was also shown in [4℄ that CP an simulate resolutions. For more information

on Cutting Planes, see the referenes [1,5,10℄.

A CP -refutation is alled tree-like if every line in the refutation is used at

most one as a premise to an appliation of a rule, so that the derivation

an be represented as a tree, otherwise it is alled dag-like. Exponential lower

bounds for tree-like CP -refutations were given in [5℄. As there are no upper

bounds known for the lauses onsidered, that paper left open the question

whether tree-like CP an polynomially simulate dag-like CP , i.e. whether for

some polynomial p(x), every set of inequalities that has a CP refutation of

size s also has a tree-like CP refutation of size p(s).

The question was answered for the subsystem CP

�

, where every oeÆient

appearing in a refutation must be bounded by a polynomial in the size of

6



the original inequalities, in [1℄: they showed that CP

�

annot be simulated by

tree-like CP

�

. We shall show the same for CP with arbitrary oeÆients.

Cutting Planes refutations are linked to monotone real iruits by the following

interpolation theorem due to Pudl�ak:

Theorem 6 (Pudl�ak [10℄) Let �p; �q; �r be disjoint vetors of variables, and let

A(�p; �q) and B(�p; �r) be sets of inequalities in the indiated variables suh that

the variables �p either have only nonnegative oeÆients in A(�p; �q) or have only

nonpositive oeÆients in B(�p; �r).

Suppose there is a CP -refutation R of A(�p; �q)[B(�p; �r). Then there is a mono-

tone real iruit C(�p) of size O(jRj) suh that for any vetor �a 2 f0; 1g

j�pj

C(�a) = 0 ! A(�a; �q) is unsatis�able

C(�a) = 1 ! B(�a; �r) is unsatis�able

Furthermore, if R is tree-like, then C(�p) is a monotone real formula.

The following sets of lauses representing st-onnetivity were used in [3℄ to

separate tree-like from dag-like resolutions, using the lower bound of [7℄ and

an interpolation theorem for resolution similar to Theorem 6 from [9℄: In the

set A(�p; �q), the variables �q ode a path from s to t in the graph given by

propositional variables p

fi;jg

with i; j 2 N , where we set s = 0 and t = n + 1:

q

0;s

; q

n+1;t

:q

i;j

_ :q

i;k

for 0 � i � n+ 1 and 0 � j < k � n+ 1

q

i;1

_ : : : _ q

i;n

for 1 � i � n

:q

i;j

_ :q

i+1;k

_ p

fj;kg

for 0 � i < n+ 1 and j; k 2 N with j 6= k :

In the set B(�p; �r), the variables �r ode a partition of N into two lasses with s

and t being in di�erent lasses and no edge between nodes in di�erent lasses.

It is given as

:r

s

; r

t

; :r

i

_ :p

fi;jg

_ r

j

for i; j 2 N with i 6= j :

Observe that the variables p

fi;jg

our only positively in A(�p; �q) and only

negatively in B(�p; �r), whih makes Theorem 6 appliable. Now the formula

C(�p) obtained from a tree-like CP -refutation in this ase has to ompute

stonn

n

, and hene has to be of size n


(log n)

, whih gives:

Theorem 7 A tree-like CP -refutation of the (inequalities representing) lauses

A(�p; �q) [B(�p; �r) has to be of size n


(log n)

.

On the other hand, it was shown in [3℄ that the lauses A(�p; �q)[B(�p; �r) have

dag-like resolution refutations of size O(n

4

). Hene tree-like Cutting Planes

7



annot polynomially simulate dag-like resolutions, and in partiular, they an-

not polynomially simulate dag-like Cutting Planes.
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