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Abstract. We define an extension RS of the bounded arithmetic theory
RY and show that the class of functions X?-definable in RY coincides
with the computational complexity class TC° of functions computable
by polynomial size, constant depth threshold circuits.

1 Introduction

The theories S, for i € N, of Bounded Arithmetic were introduced by Buss [3].
The language of these theories is the language of Peano Arithmetic extended
by symbols for the functions |3z, |z| := [logy(z + 1)] and z#y := 217I¥l. A
quantifier of the form Vz <t, 3z <t with = not occurring in ¢ is called a bounded
quantifier. Furthermore, a quantifier of the form Vz < ||, 3z < |¢| is called
sharply bounded. A formula is called (sharply) bounded if all quantifiers in it are
(sharply) bounded.

The class of bounded formulae is divided into an hierarchy analogous to the
arithmetical hierarchy: The class of sharply bounded formulae is denoted X} or
II§. For i € N, Xb, | (resp. IT},,) is the least class containing IT? (resp. X?)
and closed under conjunction, disjunction, sharply bounded quantification and
bounded existential (resp. universal) quantification.

Now the theory S4 is defined by a finite set BASIC of quantifier-free axioms
plus the scheme of polynomial induction

A(O)/\Va:(A(L%zJ) S A(z)) = VoA()

for every X?-formula A(z) (X?-PIND).

For a class of formulae I', a number-theoretic function f is said to be I'-
definable in a theory T if there is a formula A(Z,y) € I', describing the graph of
f in the standard model, and a term ¢(Z), such that T' proves

vz y<i(z) A(Z,y)
VZ,y1,y2 AZ,y1) A AT, y2) = 41 =¥

The main result of [3] relates the theories S§ to the Polynomial Time Hierarchy
PH of Computational Complexity Theory (cf. [9]):



The class of functions that are X!, ,-definable in Sit" coincides with

FPEZP, the class of functions computable in polynomial time with an
oracle from the ith level of the PH.

In particular, the functions X?-definable in S3 are precisely those computable in
polynomial time.

The theories R} were defined in various disguises by several authors [1, 10,
5]. Their language is the same as that of Si extended by additional function
symbols for subtraction = and MSP(z,i) := |5]. They are axiomatized by
an extended set BASIC of quantifier-free axioms plus the scheme of polynomial
length induction

A(0) A Va:(A(L%a:J) — A(z)) — VzA(|z|)

for every X?-formula A(z) (X%-LPIND).
R} is related to the complexity class NC, the class of functions computable
in polylogarithmic parallel time with a polynomial amount of hardware:

The X?-definable functions of Ry are exactly those in NC.

In [10] it was shown that RJ is equivalent to S5 in the extended language,
which is trivially equivalent to the theory given by the BASIC axioms and the
scheme of length induction

A(0) AVz (A(z) = A(Sz)) — Vo A(Jz|)

for every Xb-formula A(z) (X5-LIND).

T(C° denotes the class of functions computable by uniform polynomial size,
constant depth families of threshold circuits (cf. [2]). This class can be viewed
as the smallest reasonable complexity class, e.g. it is the smallest class known
to contain all arithmetical operations: integer multiplication is complete for it
under a very weak form of reducibility.

Let B be the set of functions containing all projections, the constant 0,
so(x) := 2z, s1(x) := 2z +1, Bit(z,i) giving the value of the ith bit in the binary
representation of z, # and multiplication. The class TC® was characterized in
[6] as the smallest class of functions that contains the initial functions in B and

is closed under composition and the operation of concatenation recursion on
notation (CRN), where a function f is defined by CRN from ¢ and hyg, h; if
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f(@,y) + ho(Z,y)  fory >0

f(@y) + ha(z,y)

provided that h;(Z,y) < 1 for all Z,y and ¢ = 0, 1. It follows from this charac-
terization by methods from [4] that the characteristic function of any predicate

defined by a Yl-formula in the language of RY is in T'C°, and that TC° is
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closed under sharply bounded minimization, i.e. if g € TC°, then f defined by
f(z) := pi<|z| g(i) = 0 is also in TCO.

We shall define an extension RJ of R the X?-definable functions of which are
exactly the functions in 77C°. In [6], an arithmetical theory TTC" is presented
that also characterizes TC°. We shall compare our work to this in the final
section of the paper.

2 Definition of Rg

Before the theory RJ can be defined, we have to develop R9 a little. To be able
to talk about the bits of a number, we first define Mod2(z) :==z =2 - [3z] and
then Bit(x,i) := Mod2(MSP(x,i)). In RY, a number is uniquely determined by
its bits, as the extensionality axiom

la] = |b] A Vi< |a| (Bit(a,i) = Bit(b,i)) — a=b

can be proved in RY (see [7] for a proof).
We shall need the possibility to define a number by specifying its bits. So for
a class of formulae I', let the I'-comprehension scheme be the axiom scheme

Ty <2Vi<|t| (Bit(y,i) =1 < A(i))

for every formula A(i) € I

Next we need the possibility of coding pairs and short sequences. The coding
used is based on the one presented in [5], but we need a refined analysis to show
its accessibility in RY.

First let sg(z) := 1= z, and then [z < y] := sg(z = y). Obviously, [t <y] =1
iff z <y and [z < y] =0 else. Further let [z < y] := [Sz < y|, and then define

max(z,y) =z <yl -y+[y <az]-z.
Let now z ~y := z - 21/ + y, then we define
(z,y) := (2|max(m,y)\ + )~ (Q\max(ag7y)| ty).

We go on to define DMSB(z) := z = 2/l2#l front(z) := MSP(z, ||z|]) and
back(z) := x ~ front(z) - 21770 and finally

(z)1 := DM SB(front(z)) and (z)s := DM SB(back(x)) .
Using extensionality, one can prove in RY that ({(z,y)); = = and ({z,y))> =

y, hence these functions form a pairing system. The pairing function is not
surjective, but its range can be described by

1 .
pair(z) > & > 2 A Mod2(|z|) = 0 A Bit(z, |_§|a;|J -1)=1.



Inductively we can define (z)?) = (z); fori =1,2,and forn >2and j <n

<a:1, ... ,:z:n,:z:n+1> = ((a:l, ... ,:z:n>,a;n+1)
(n+1) (n)
(x)j : ((x)l)J
(n+1)
(#) = (@)
Note that all the functions defined up to now are terms in the language of RY.
Furthermore, they are all in TC?, since the function symbols in the language

represent functions in T'CP.
We define a restricted form of division for small numbers by the formula

z = LenDiv(z,y) > (y=0Az2=0)v(y>0nz-y <|z|a(S2)-y>|z|),

then in RY we can prove Vz,y 3z <|z| 2 = LenDiv(z,y) as follows: Consider the
following instance of X5-LIND:

b-0< Sla|aVz(b-z < Sla] = b-Sx < Sla|) = Ve b-|z| < Sla]

Since b > 0 — —Vz b |z| < S|a| is provable, and b -0 > S|a| can be refuted, we
get from the contrapositive of the above

b>0—3Jx(b-z<la|arb-Sz > |a|)

from which the claim follows easily. The uniqueness of a z with z = LenDiv(z, y)
is also easily proved in RY.

Now the formula z = LenDiv(z,y) is X§, and z is always bounded by |z,
hence we can extend the language by a function symbol for Len Div such that any
sharply bounded formula in the extended language is equivalent to a X5-formula
in the original language.

Let LenMod(z,y) := |z| ~ y-LenDiv(z,y). For readability, we write L%J for
LenDiv(z,y) and |z|mody for LenMod(x,y). Let furthermore LSP'(x,y) :=
z = MSP(z,|y|) - 2!, we also write LSP(z,|y|) for this, where LSP(z,i) is
intended to be the number consisting of the rightmost i bits of z, i.e. 2 mod 2’.
Now we define a coding for sequences of numbers of length less than |a| by

|w]

Segq(w) 4> |lw|mod |a] =0 A Vi< LHJ Bit(w,(i+1)-|a|]) =1
Leng(w) := L%J

Ba(w, i) = DMSB(LSP(MSP(w, (i - 1) - [al),la]))
Note that §,(w, ) is a term, and Seq,(w) as well as any sharply bounded formula
containing Len, are equivalent to a Xj-formula. Finally we define

Seq(w) ¢+ pair(w) A Seq(y), ((w)2)

Len(w) := Len(w)l((w)2)

Bw, i) := Bw), (w)2,1)



The remarks above concerning 3,, Seq, and Len, also apply to 3, Seq and Len.
Finally we need a term SqBd(z,y) such that a sequence of length |z| all of whose
entries are bounded by y has a code less than SqBd(z,y). For this we can set
SqBd(z,y) := 4(z#2y)>.

By using sharply bounded minimization, one sees that the functions Len Div
and LenMod, and hence also the sequence coding operations, are in TC®.

Now for a class of formulae I', the I'-replacement axiom scheme is

Vo <|s| Jy<t(z) A(z,y) = Jw < SqBd(2s,t(|s|)) [Seq(w)
A Len(w) = |s| + 1 aVz <|s| B(w, Sz) < t(z) A A(z, B(w, Sz))] ,

for every formula A(z,y) € I'.

Finally, the theory RJ is defined as R extended by the schemes of X§-
comprehension and X§-replacement. A result in [7] shows that this extension is
proper.

3 Definability of TC°-functions

For every X?-formula A(a) we define a formula WITNESS 4 (w,@) (to be read as
“w witnesses A(a)”) inductively as follows: If A(a) is a X5-formula, then

WITNESS 4 (w, @) := A(a).
If A(@) = B(a)oC(a) for o € { A, v }, then

WITNESS 4 (w, @) := WITNESSg ((w)1,a) o WITNESSc ((w)2, G).
If A(a) =32 <t(a) B(a,z) and A(a) is not a Li-formula, then

WITNESS 4 (w, @) := (w)a < t(a) A WITNESSg ((w)1, @, (w)2).
If A(a) = Vz<|s(a)| B(a,z) and A(a) is not a X}-formula, then

WITNESS 4 (w, a) := Seq(w) A Len(w) = |s(a)| + 1 A
AVz<|s(a)| WITNESS g (B(w, z + 1), a, ).

If A(@) = —B(a) and A(a) is not a X}-formula, then let A*(a) be a formula
logically equivalent to A(a) obtained by pushing the negation side inside by de
Morgan’s rules, and let

WITNESS 4 (w, @) := WITNESS 4+ (w, @).
Clearly, WITNESS 4 (w, @) is equivalent i-formula for every Y?-formula A(a).

Proposition 1. For every X?-formula A(a) there is a term ta(a) such that:

(i) RS+ WITNESSA(w,a) — A(a)



(ii) R+ A(a) — Jw<ta(a) WITNESS 4 (w, @)

This is proved by a straightforward induction on the complexity of the formula
A(a). For part (ii), in the case where A(a) starts with a sharply bounded uni-
versal quantifier, ¥J-replacement is needed.

Proposition2. The $?-replacement azioms are provable in RY.

Proof. By Prop. 1, every X?-formula A(x,y) is equivalent in RY to a formula of
the form 3z <wu(z,y) B(z,y, z) for some term u(z,y) and B(z,y,2) € X, hence
it suffices to deduce the replacement axiom for such a formula.

From the premise of the replacement axiom for this formula we can now
easily conclude Vz <|s| Ip<(t(x),u(z,t(x))) B(z, (p)1, (p)2), and an application
of X-replacement yields

v < SqBd(2s, (t(]s)), uls], t(1s)) [Seq(v) n Len(v) = [s| + 14
AV <|s| B(v, Sa) < (t(x), u(z, t(x))) A Bz, (B(v, S)1, (B0, 52))2)] - (¥)

Next we need the following
Lemma 3. For every term t(x) the following is provable in R9:

Yo Seq(v) —
Jw [Seq(w) n Len(w) = Len(v) A Vi< Len(w) B(w, Si) = t(B(v, Si))] -

This lemma, which is easily proved by X}-replacement, for ¢(z) = (); applied to
the v from (x) yields a sequence as required in the conclusion of the replacement
axiom. O

Now we are ready to show

Theorem 4. Every function in TC® is X?-definable in RY.

Proof. Tt is trivial that the ¥?-definable functions in R comprise the initial
functions in B and are closed under composition, hence it remains to prove that
they are closed under CRN.

So let f be defined by CRN from g, hg and hy, let g and h; be X?-defined
by the formulae C(Z,y) and B;(Z,y, z) resp. and the terms s(Z) and ¢;(Z,y), for
i=0,1.

First we show the existence of the sequence of those values of the functions
h; that are needed in the computation of f(z,y) by CRN, i.e. we prove in R

Jw < SqBd(2y,m(Z,y)) Seq(w) A Len(w) = |y| + 1 A
~Vilyl [ (Bit(y,i) = 0 Bo(z, MSP(y, |yl - i), B(w,i +1))) v
v (Bit(y,i) = 1n By (2, MSP(y, |y| - 1), B(w,i + 1)) ] ,



where m(Z,y) := max(to(Z,y), 1 (F,y)). This follows by Y?!-replacement from

Vi<l|y| 3z<m(z,y) [ (Bit(y,i) = 0 A Bo(Z, MSP(y,|y| ~i),2)) v
v (Bit(y,i) = 1A By (z, MSP(y, |y| - i),2)) ],

which is easily obtained from the existence conditions in the X?-definitions of
ho and hl.

Now we show that for every sequence w and number @ there is a number
consisting of a concatenated with the least significant bits of the terms of w, i.e.

Va,w Seq(w) — 3z <1#aw [ |z| = |a| + Len(w)
AVi<|z| (i < Len(w) A Bit(z,i) = Mod2(8(w,i + 1)) )
v (i > Len(w) A Bit(z,i) = Bit(a,i - Len(w)) ) |

which is easily deduced in RJ by use of X}-comprehension. Setting g(z) for a and
the sequence from above for w yields the existence condition for a X?-definition
of f, with the bounding term 1#s(Z) - SqBd(2y,m(Z,y)). The uniqueness is
easily proved by use of extensionality. O

4 Witnessing

The converse of Thm. 4 is proved by a witnessing argument as in [3]. For this, R9
has to be formulated in a sequent calculus with special rules for the introduction
of bounded quantifiers, the BASIC, comprehension and replacement axioms as
initial sequents and the L-LIND rule

A(b), [ = A, A(Sb)
A(0), ' = A A(Jt])

where the free variable b must not occur in the conclusion, except possibly in
the term ¢.

Since the formulae in the initial sequents are all X%, we can, by a standard
cut elimination argument, assume that every formula appearing in the proof of
a X!-statement is in X? U IT?. Therefore we can prove the following witnessing
theorem by induction on the length of a proof:

Theorem 5. Let I, A be sequences of X°-formulae and I, A sequences of IT?-
formulae such that

ROFIIT = A A =: S,

let furthermore all free variables in S be among the a. Let G := N I'A \ —A and
H:=\/ Av \/~II. Then there is a function f € TC® such that

N | WITNESSG (w, @) - WITNESS g (f(w, @), a)



Proof. The induction base has four cases: A logical axiom A =—> A, where A
is an atomic formula, is trivially witnessed, and likewise the initial sequents
stemming from the BASIC axioms. A function witnessing a X§-comprehension
axiom

Ty <28 Vi<|t| (Bit(y,i) =1+ A(i))

can be defined by CRN from the characteristic function of the predicate A(7),
which is in TCP since A(i) is a Ti-formula.
A witness for the left hand side of a X-replacement axiom

Vr<|s| Jy<t(z) A(z,y) = Jw <SqBd(2s,t(]s])) [Seq(w) A
A Len(w) = |s| + 1 aVz <|s| B(w, Sz) < t(z) A A(z, B(w, Sz))] ,

is a sequence of length |s|+1 whose ith term is a pair (¢;,r;), where ¢; is a witness
for A(i — 1,r;). Similar to Lemma 3 we obtain the sequence R := (r;)i<|s+1-
This sequence satisfies the matrix B(w) := [...] of the right hand side of the
replacement axiom, and since B(w) is equivalent to a Y}-formula, this can be
witnessed by any value. Thus (0, R) witnesses Jw < SqBd(2s,t(|s|)) B(w).

In the induction step there is a case distinction corresponding to the last
inference in the proof. In the cases of bounded quantifier inferences, we further
have to distinguish whether the principal formula of the inference is 2§ or not.
Most of the cases are straightforward or easily adapted from existing witnessing
proofs like the proof of the main theorem in [3].

The only more difficult cases are (V <: right) where the principal formula is
not X%, and LIND. W.lo.g. we can assume that a (V <: right) inference is of
the form

b< |t|, T = A, A(b)
I' = A, Vz<|t] A(z)

with I, A consisting of X?-formulae. Then the induction hypothesis yields a func-
tion f € TC? such that f(w,b) witnesses \/ A v A(b) provided that w witnesses
b<|t|a AT.

We need a function ¢ such that g(w) witnesses \/ A v Vz <|t| A(z) whenever

w witnesses A\ I'. Let now w' := <0, (w)im), RN (w) |(|F1‘“\)> and let

g(w) = <(f(w',0))§‘A'“),... ,(f(w',O))l"AA“+1), s(w,t)>

(IA\+1)>
[A[+1 7i<|t]”
can be defined by use of CRN, and thus g is in TC°. Now it is easily verified
that g has the desired witnessing property.

Finally we consider a LIN D-inference of the form

where s(w,t) is a code for the sequence ((f(w,7)) The function s

A(b), T = A, A(Sb)
A0), T = A, A(lt])




with I', A as above. Since A(b) is X, by induction there is f € TC such that for
each w,b with w witnessing A(b) A A I, either f(w,b) witnesses \/ A or A(Sb)
holds. Now define

g(w) := f(w, py <[|t| WITNESS\ 4 (f(w,Y))) ,

then for w witnessing A(0)a A I', either g(w) witnesses \/ A and we are done, or
for every y < |t| f(w,y) does not witness \/ A. Since w also witnesses A(y)a A I,
we can conclude A(Sy) from this for every such y, hence we can conclude A(|t|)
inductively from A(0) then. Since A(|t|) is X§, it is then trivially witnessed. O

From this witnessing theorem we obtain the converse of Thm. 4:

Corollary 6. Every function X?-definable in RS is in TCO.

Proof. If f is X?-definable in R, there is a X?-formula A(a,b) and a term #(a)
such that R proves Jy <#(a)A(a,y). Then by Thm. 5 there is a function g € TC°
such that g(@) witnesses this. But then (g(a)). satisfies A(a, (g(a))2) for every
a, and hence f(a) = (g(a))2, and thus f € TC®. O

Together with Thm. 4 we get the characterization of the functions in T'C°:

Theorem 7. The X?-definable functions in R are exactly those in TCO.

5 Conclusion

We have characterized the class TC? as the X?-definable functions in R9. From
this characterization, we can conclude things like

If RS = R}, then TC® = NC, and RS = S} implies TC® = FP.
or, viewed from a different perspective:

Under the hypothesis that TC® # FP (or TC® # NC), S; (resp. R}) is
not conservative over Ry w.r.t. VX?-sentences.

In [6], a theory TTC? is defined that also yields a characterization of TC°.
For the purpose of comparison, we recall the definition of TT'C?: The language
is the same as that of RY. To state its axioms we first need a technical definition:

A formula A is called essentially sharply bounded, or esb, in a theory T', if A
is in the smallest class I" of formulae s.t.

(i) every atomic formula is in I.
(ii) I'is closed under propositional connectives and sharply bounded quantifica-
tion.
(iii) if A(Z,y) and B(Z,y) are in I, and Yy, z <#(Z) A(Z,y) A A(Z,2) > y = 2
and VZ Jy <t(Z) A(Z,y) are provable in T, then the formulae

Jy<t(z) A(Z,y) » B(z,y) and Vy<i(z) A(7,y) — B(z,y)

are in I.



Now the theory TTCP is given by the BASIC axioms, esb-LIND and the
esb-comprehension scheme, i.e. TTC? is the least theory T that contains the
basic axioms and has the property that whenever A(z) is esb in T', then

A(0) AVz (A(z) = A(z + 1)) = Vz A(|z|)

and
Jy <2 vi<|t| (Bit(y,i) =1 < A(i))

are axioms of 7T'.

The theory TTC? characterizes TC? in the following way: TC° coincides with
the class of esb-definable functions in TTC°. Compared to this characterization,
the one in the present paper is, in the author’s opinion, much more natural.

First, the notion of X?-definability is a more useful one than that of esb-
definability, since it delineates the functions in TC°® among a probably larger
class of functions (those whose graph is in N P vs. those whose graph is in TC?).
This might be easily remedied since it could be the case that the X?-definable
functions of (some extension of) TTC" also coincide with T'C°.

But second, the theory TTC? itself has a quite cumbersome definition. We
think that the axiomatization of a theory should be such that the set of axioms
is easily decidable. This is not the case with TT'C?: It seems that for a VX?-
sentence, determining whether it is an axiom of TT'C? is as difficult as deciding
its provability in TT'C.

There is of course the possibility that TTCP is equivalent to RS, but this
seems to be unlikely, or at least difficult to prove, in view of the following fact:
A crucial step in the obvious proof of equivalence would be to show that every
esb-formula is equivalent to a Xi-formula in TTC?. Now the esb-formulae in
TTC® describe exactly the predicates in TC?. But in [8] it was shown that the
class of predicates definable by X}-formulae in (a variant of) the language of RS
is a proper subclass of P. Hence a proof of equivalence as above would separate
TC° from P, and thus solve a difficult open problem in Complexity Theory.
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