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Abstract. We de�ne an extension

�

R

0

2

of the bounded arithmetic theory

R

0

2

and show that the class of functions �

b

1

-de�nable in

�

R

0

2

coincides

with the computational complexity class TC

0

of functions computable

by polynomial size, constant depth threshold circuits.

1 Introduction

The theories S

i

2

, for i 2 N, of Bounded Arithmetic were introduced by Buss [3].

The language of these theories is the language of Peano Arithmetic extended

by symbols for the functions b

1

2

xc, jxj := dlog

2

(x+ 1)e and x#y := 2

jxj�jyj

. A

quanti�er of the form 8x� t , 9x� t with x not occurring in t is called a bounded

quanti�er. Furthermore, a quanti�er of the form 8x � jtj , 9x � jtj is called

sharply bounded. A formula is called (sharply) bounded if all quanti�ers in it are

(sharply) bounded.

The class of bounded formulae is divided into an hierarchy analogous to the

arithmetical hierarchy: The class of sharply bounded formulae is denoted �

b

0

or

�

b

0

. For i 2 N, �

b

i+1

(resp. �

b

i+1

) is the least class containing �

b

i

(resp. �

b

i

)

and closed under conjunction, disjunction, sharply bounded quanti�cation and

bounded existential (resp. universal) quanti�cation.

Now the theory S

i

2

is de�ned by a �nite set BASIC of quanti�er-free axioms

plus the scheme of polynomial induction

A(0) ^ 8x (A(b

1

2

xc) ! A(x) ) ! 8xA(x)

for every �

b

i

-formula A(x) (�

b

i

-PIND).

For a class of formulae � , a number-theoretic function f is said to be � -

de�nable in a theory T if there is a formula A(�x; y) 2 � , describing the graph of

f in the standard model, and a term t(�x), such that T proves

8�x 9y� t(�x)A(�x; y)

8�x; y

1

; y

2

A(�x; y

1

) ^A(�x; y

2

)! y

1

= y

2

The main result of [3] relates the theories S

i

2

to the Polynomial Time Hierarchy

PH of Computational Complexity Theory (cf. [9]):



The class of functions that are �

b

i+1

-de�nable in S

i+1

2

coincides with

FP

�

P

i

, the class of functions computable in polynomial time with an

oracle from the ith level of the PH.

In particular, the functions �

b

1

-de�nable in S

1

2

are precisely those computable in

polynomial time.

The theories R

i

2

were de�ned in various disguises by several authors [1, 10,

5]. Their language is the same as that of S

i

2

extended by additional function

symbols for subtraction

:

and MSP (x; i) := b

x

2

i

c. They are axiomatized by

an extended set BASIC of quanti�er-free axioms plus the scheme of polynomial

length induction

A(0) ^ 8x (A(b

1

2

xc)! A(x) ) ! 8xA(jxj)

for every �

b

i

-formula A(x) (�

b

i

-LPIND).

R

1

2

is related to the complexity class NC, the class of functions computable

in polylogarithmic parallel time with a polynomial amount of hardware:

The �

b

1

-de�nable functions of R

1

2

are exactly those in NC.

In [10] it was shown that R

0

2

is equivalent to S

0

2

in the extended language,

which is trivially equivalent to the theory given by the BASIC axioms and the

scheme of length induction

A(0) ^ 8x (A(x) ! A(Sx)) ! 8x A(jxj)

for every �

b

0

-formula A(x) (�

b

0

-LIND).

TC

0

denotes the class of functions computable by uniform polynomial size,

constant depth families of threshold circuits (cf. [2]). This class can be viewed

as the smallest reasonable complexity class, e.g. it is the smallest class known

to contain all arithmetical operations: integer multiplication is complete for it

under a very weak form of reducibility.

Let B be the set of functions containing all projections, the constant 0,

s

0

(x) := 2x, s

1

(x) := 2x+1, Bit(x; i) giving the value of the ith bit in the binary

representation of x, # and multiplication. The class TC

0

was characterized in

[6] as the smallest class of functions that contains the initial functions in B and

is closed under composition and the operation of concatenation recursion on

notation (CRN), where a function f is de�ned by CRN from g and h

0

; h

1

if

f(�x; 0) = g(�x)

f(�x; s

0

(y)) = 2 � f(�x; y) + h

0

(�x; y) for y > 0

f(�x; s

1

(y)) = 2 � f(�x; y) + h

1

(�x; y)

provided that h

i

(�x; y) � 1 for all �x; y and i = 0; 1. It follows from this charac-

terization by methods from [4] that the characteristic function of any predicate

de�ned by a �

b

0

-formula in the language of R

0

2

is in TC

0

, and that TC

0

is



closed under sharply bounded minimization, i.e. if g 2 TC

0

, then f de�ned by

f(x) := �i�jxj g(i) = 0 is also in TC

0

.

We shall de�ne an extension

�

R

0

2

of R

0

2

the �

b

1

-de�nable functions of which are

exactly the functions in TC

0

. In [6], an arithmetical theory TTC

0

is presented

that also characterizes TC

0

. We shall compare our work to this in the �nal

section of the paper.

2 De�nition of

�

R

0

2

Before the theory

�

R

0

2

can be de�ned, we have to develop R

0

2

a little. To be able

to talk about the bits of a number, we �rst de�ne Mod2(x) := x

:

2 � b

1

2

xc and

then Bit(x; i) :=Mod2(MSP (x; i)). In R

0

2

, a number is uniquely determined by

its bits, as the extensionality axiom

jaj = jbj ^ 8i< jaj (Bit(a; i) = Bit(b; i)) ! a = b

can be proved in R

0

2

(see [7] for a proof).

We shall need the possibility to de�ne a number by specifying its bits. So for

a class of formulae � , let the � -comprehension scheme be the axiom scheme

9y<2

jtj

8i< jtj (Bit(y; i) = 1$ A(i))

for every formula A(i) 2 � .

Next we need the possibility of coding pairs and short sequences. The coding

used is based on the one presented in [5], but we need a re�ned analysis to show

its accessibility in R

0

2

.

First let �sg(x) := 1

:

x, and then [x � y] := �sg(x

:

y). Obviously, [x � y] = 1

i� x � y and [x � y] = 0 else. Further let [x < y] := [Sx � y], and then de�ne

max(x; y) := [x � y] � y + [y < x] � x :

Let now xa y := x � 2

jyj

+ y, then we de�ne

hx; yi := (2

jmax(x;y)j

+ x)a (2

jmax(x;y)j

+ y) :

We go on to de�ne DMSB(x) := x

:

2

jb

1

2

xcj

, front(x) := MSP (x; b

1

2

jxjc) and

back(x) := x

:

front(x) � 2

jfront(x)j

, and �nally

(x)

1

:= DMSB(front(x)) and (x)

2

:= DMSB(back(x)) :

Using extensionality, one can prove in R

0

2

that (hx; yi)

1

= x and (hx; yi)

2

=

y, hence these functions form a pairing system. The pairing function is not

surjective, but its range can be described by

pair(x) :$ x > 2 ^Mod2(jxj) = 0 ^Bit(x; b

1

2

jxjc

:

1) = 1 :



Inductively we can de�ne

�

x

�

(2)

i

:= (x)

i

for i = 1; 2, and for n � 2 and j � n




x

1

; : : : ; x

n

; x

n+1

�

:= h




x

1

; : : : ; x

n

�

; x

n+1

i

�

x

�

(n+1)

j

:=

�

(x)

1

�

(n)

j

�

x

�

(n+1)

n+1

:= (x)

2

Note that all the functions de�ned up to now are terms in the language of R

0

2

.

Furthermore, they are all in TC

0

, since the function symbols in the language

represent functions in TC

0

.

We de�ne a restricted form of division for small numbers by the formula

z = LenDiv(x; y) :$ (y = 0 ^ z = 0) _ (y > 0 ^ z � y � jxj ^ (Sz) � y > jxj) ;

then in R

0

2

we can prove 8x; y 9z�jxj z = LenDiv(x; y) as follows: Consider the

following instance of �

b

0

-LIND:

b � 0 < Sjaj ^ 8x (b � x < Sjaj ! b � Sx < Sjaj) ! 8x b � jxj < Sjaj

Since b > 0 ! :8x b � jxj < Sjaj is provable, and b � 0 � Sjaj can be refuted, we

get from the contrapositive of the above

b > 0! 9x (b � x � jaj ^ b � Sx > jaj)

from which the claim follows easily. The uniqueness of a z with z = LenDiv(x; y)

is also easily proved in R

0

2

.

Now the formula z = LenDiv(x; y) is �

b

0

, and z is always bounded by jxj,

hence we can extend the language by a function symbol for LenDiv such that any

sharply bounded formula in the extended language is equivalent to a �

b

0

-formula

in the original language.

Let LenMod(x; y) := jxj

:

y �LenDiv(x; y). For readability, we write b

jxj

y

c for

LenDiv(x; y) and jxjmod y for LenMod(x; y). Let furthermore LSP

0

(x; y) :=

x

:

MSP (x; jyj) � 2

jyj

; we also write LSP (x; jyj) for this, where LSP (x; i) is

intended to be the number consisting of the rightmost i bits of x, i.e. xmod 2

i

.

Now we de�ne a coding for sequences of numbers of length less than jaj by

Seq

a

(w) :$ jwjmod jaj = 0 ^ 8i<b

jwj

jaj

cBit(w; (i+ 1) � jaj) = 1

Len

a

(w) := b

jwj

jaj

c

�

a

(w; i) := DMSB(LSP (MSP (w; (i

:

1) � jaj); jaj))

Note that �

a

(w; i) is a term, and Seq

a

(w) as well as any sharply bounded formula

containing Len

a

are equivalent to a �

b

0

-formula. Finally we de�ne

Seq(w) :$ pair(w) ^ Seq

(w)

1

((w)

2

)

Len(w) := Len

(w)

1

((w)

2

)

�(w; i) := �

(w)

1

((w)

2

; i)



The remarks above concerning �

a

, Seq

a

and Len

a

also apply to �, Seq and Len.

Finally we need a term SqBd(x; y) such that a sequence of length jxj all of whose

entries are bounded by y has a code less than SqBd(x; y). For this we can set

SqBd(x; y) := 4(x#2y)

2

.

By using sharply bounded minimization, one sees that the functions LenDiv

and LenMod, and hence also the sequence coding operations, are in TC

0

.

Now for a class of formulae � , the � -replacement axiom scheme is

8x�jsj 9y� t(x) A(x; y) ! 9w<SqBd(2s; t(jsj))

�

Seq(w) ^

^ Len(w) = jsj+ 1 ^ 8x�jsj �(w; Sx) � t(x) ^ A(x; �(w; Sx))

�

;

for every formula A(x; y) 2 � .

Finally, the theory

�

R

0

2

is de�ned as R

0

2

extended by the schemes of �

b

0

-

comprehension and �

b

0

-replacement. A result in [7] shows that this extension is

proper.

3 De�nability of TC

0

-functions

For every �

b

1

-formula A(�a) we de�ne a formula Witness

A

(w; �a) (to be read as

\w witnesses A(�a)") inductively as follows: If A(�a) is a �

b

0

-formula, then

Witness

A

(w; �a) :� A(�a):

If A(�a) � B(�a) � C(�a) for � 2 f ^ ; _ g, then

Witness

A

(w; �a) :�Witness

B

((w)

1

; �a) �Witness

C

((w)

2

; �a):

If A(�a) � 9x� t(�a) B(�a; x) and A(�a) is not a �

b

0

-formula, then

Witness

A

(w; �a) :� (w)

2

� t(�a) ^Witness

B

((w)

1

; �a; (w)

2

):

If A(�a) � 8x�js(�a)j B(�a; x) and A(�a) is not a �

b

0

-formula, then

Witness

A

(w; �a) :� Seq(w) ^ Len(w) = js(�a)j+ 1 ^

^ 8x�js(�a)jWitness

B

(�(w; x + 1); �a; x):

If A(�a) � :B(�a) and A(�a) is not a �

b

0

-formula, then let A

�

(�a) be a formula

logically equivalent to A(�a) obtained by pushing the negation side inside by de

Morgan's rules, and let

Witness

A

(w; �a) :�Witness

A

�

(w; �a):

Clearly, Witness

A

(w; �a) is equivalent �

b

0

-formula for every �

b

1

-formula A(�a).

Proposition 1. For every �

b

1

-formula A(�a) there is a term t

A

(�a) such that:

(i)

�

R

0

2

`Witness

A

(w; �a) ! A(�a)



(ii)

�

R

0

2

` A(�a)! 9w� t

A

(�a)Witness

A

(w; �a)

This is proved by a straightforward induction on the complexity of the formula

A(�a). For part (ii), in the case where A(�a) starts with a sharply bounded uni-

versal quanti�er, �

b

0

-replacement is needed.

Proposition2. The �

b

1

-replacement axioms are provable in

�

R

0

2

.

Proof. By Prop. 1, every �

b

1

-formula A(x; y) is equivalent in

�

R

0

2

to a formula of

the form 9z�u(x; y)B(x; y; z) for some term u(x; y) and B(x; y; z) 2 �

b

0

, hence

it su�ces to deduce the replacement axiom for such a formula.

From the premise of the replacement axiom for this formula we can now

easily conclude 8x�jsj 9p�ht(x); u(x; t(x))i B(x; (p)

1

; (p)

2

), and an application

of �

b

0

-replacement yields

9v�SqBd(2s; ht(jsj); u(jsj; t(jsj))i)

�

Seq(v) ^ Len(v) = jsj+ 1 ^

^ 8x�jsj �(v; Sx) � ht(x); u(x; t(x))i ^B(x; (�(v; Sx))

1

; (�(v; Sx))

2

)

�

: (�)

Next we need the following

Lemma3. For every term t(x) the following is provable in

�

R

0

2

:

8v Seq(v)!

9w

�

Seq(w) ^ Len(w) = Len(v) ^ 8i�Len(w) �(w; Si) = t(�(v; Si))

�

:

This lemma, which is easily proved by �

b

0

-replacement, for t(x) = (x)

1

applied to

the v from (�) yields a sequence as required in the conclusion of the replacement

axiom. ut

Now we are ready to show

Theorem4. Every function in TC

0

is �

b

1

-de�nable in

�

R

0

2

.

Proof. It is trivial that the �

b

1

-de�nable functions in

�

R

0

2

comprise the initial

functions in B and are closed under composition, hence it remains to prove that

they are closed under CRN.

So let f be de�ned by CRN from g, h

0

and h

1

, let g and h

i

be �

b

1

-de�ned

by the formulae C(�x; y) and B

i

(�x; y; z) resp. and the terms s(�x) and t

i

(�x; y), for

i = 0; 1.

First we show the existence of the sequence of those values of the functions

h

i

that are needed in the computation of f(x; y) by CRN, i.e. we prove in

�

R

0

2

9w�SqBd(2y;m(�x; y)) Seq(w) ^ Len(w) = jyj+ 1 ^

^ 8i�jyj

� �

Bit(y; i) = 0 ^B

0

(�x;MSP (y; jyj

:

i); �(w; i+ 1))

�

_

_

�

Bit(y; i) = 1 ^B

1

(�x;MSP (y; jyj

:

i); �(w; i+ 1))

� �

;



where m(�x; y) := max(t

0

(�x; y); t

1

(�x; y)). This follows by �

b

1

-replacement from

8i< jyj 9z�m(�x; y)

� �

Bit(y; i) = 0 ^ B

0

(�x;MSP (y; jyj

:

i); z)

�

_

_

�

Bit(y; i) = 1 ^ B

1

(�x;MSP (y; jyj

:

i); z)

� �

;

which is easily obtained from the existence conditions in the �

b

1

-de�nitions of

h

0

and h

1

.

Now we show that for every sequence w and number a there is a number

consisting of a concatenated with the least signi�cant bits of the terms of w, i.e.

8a; w Seq(w) !9z�1#aw

�

jzj = jaj+ Len(w) ^

^ 8i< jzj

�

i < Len(w) ^Bit(z; i) =Mod2(�(w; i + 1))

�

_

�

i � Len(w) ^Bit(z; i) = Bit(a; i

:

Len(w))

� �

which is easily deduced in

�

R

0

2

by use of �

b

0

-comprehension. Setting g(�x) for a and

the sequence from above for w yields the existence condition for a �

b

1

-de�nition

of f , with the bounding term 1#s(�x) � SqBd(2y;m(�x; y)). The uniqueness is

easily proved by use of extensionality. ut

4 Witnessing

The converse of Thm. 4 is proved by a witnessing argument as in [3]. For this,

�

R

0

2

has to be formulated in a sequent calculus with special rules for the introduction

of bounded quanti�ers, the BASIC, comprehension and replacement axioms as

initial sequents and the �

b

0

-LIND rule

A(b); � =) �;A(Sb)

A(0); � =) �;A(jtj)

:

where the free variable b must not occur in the conclusion, except possibly in

the term t.

Since the formulae in the initial sequents are all �

b

1

, we can, by a standard

cut elimination argument, assume that every formula appearing in the proof of

a �

b

1

-statement is in �

b

1

[�

b

1

. Therefore we can prove the following witnessing

theorem by induction on the length of a proof:

Theorem5. Let �;� be sequences of �

b

1

-formulae and �;� sequences of �

b

1

-

formulae such that

�

R

0

2

` �;� =) �;� =: S;

let furthermore all free variables in S be among the �a. Let G :�

V

� ^

V

:� and

H :�

W

� _

W

:�. Then there is a function f 2 TC

0

such that

N j=Witness

G

(w; �a) !Witness

H

(f(w; �a); �a)



Proof. The induction base has four cases: A logical axiom A =) A, where A

is an atomic formula, is trivially witnessed, and likewise the initial sequents

stemming from the BASIC axioms. A function witnessing a �

b

0

-comprehension

axiom

9y<2

jtj

8i< jtj (Bit(y; i) = 1$ A(i))

can be de�ned by CRN from the characteristic function of the predicate A(i),

which is in TC

0

since A(i) is a �

b

0

-formula.

A witness for the left hand side of a �

b

0

-replacement axiom

8x�jsj 9y� t(x) A(x; y) =) 9w<SqBd(2s; t(jsj))

�

Seq(w) ^

^ Len(w) = jsj+ 1 ^ 8x�jsj �(w; Sx) � t(x) ^A(x; �(w; Sx))

�

;

is a sequence of length jsj+1 whose ith term is a pair h`

i

; r

i

i, where `

i

is a witness

for A(i � 1; r

i

). Similar to Lemma 3 we obtain the sequence R := hr

i

i

i�jsj+1

.

This sequence satis�es the matrix B(w) := [: : : ] of the right hand side of the

replacement axiom, and since B(w) is equivalent to a �

b

0

-formula, this can be

witnessed by any value. Thus h0; Ri witnesses 9w�SqBd(2s; t(jsj)) B(w).

In the induction step there is a case distinction corresponding to the last

inference in the proof. In the cases of bounded quanti�er inferences, we further

have to distinguish whether the principal formula of the inference is �

b

0

or not.

Most of the cases are straightforward or easily adapted from existing witnessing

proofs like the proof of the main theorem in [3].

The only more di�cult cases are (8�: right) where the principal formula is

not �

b

0

, and LIND. W.l.o.g. we can assume that a (8� : right) inference is of

the form

b � jtj; � =) �;A(b)

� =) �;8x�jtjA(x)

with �;� consisting of�

b

1

-formulae. Then the induction hypothesis yields a func-

tion f 2 TC

0

such that f(w; b) witnesses

W

� _A(b) provided that w witnesses

b � jtj ^

V

� .

We need a function g such that g(w) witnesses

W

� _ 8x�jtjA(x) whenever

w witnesses

V

� . Let now w

0

:=




0;

�

w

�

(j� j)

1

; : : : ;

�

w

�

(j� j)

j� j

�

and let

g(w) :=

D

�

f(w

0

; 0)

�

(j�j+1)

1

; : : : ;

�

f(w

0

; 0)

�

(j�j+1)

j�j

; s(w; t)

E

where s(w; t) is a code for the sequence


�

f(w; i)

�

(j�j+1)

j�j+1

�

i�jtj

. The function s

can be de�ned by use of CRN, and thus g is in TC

0

. Now it is easily veri�ed

that g has the desired witnessing property.

Finally we consider a LIND-inference of the form

A(b); � =) �;A(Sb)

A(0); � =) �;A(jtj)

;



with �;� as above. Since A(b) is �

b

0

, by induction there is f 2 TC

0

such that for

each w; b with w witnessing A(b) ^

V

� , either f(w; b) witnesses

W

� or A(Sb)

holds. Now de�ne

g(w) := f(w; �y�jtjWitness

W

�

(f(w; y))) ;

then for w witnessing A(0)^

V

� , either g(w) witnesses

W

� and we are done, or

for every y � jtj f(w; y) does not witness

W

�. Since w also witnesses A(y)^

V

� ,

we can conclude A(Sy) from this for every such y, hence we can conclude A(jtj)

inductively from A(0) then. Since A(jtj) is �

b

0

, it is then trivially witnessed. ut

From this witnessing theorem we obtain the converse of Thm. 4:

Corollary 6. Every function �

b

1

-de�nable in

�

R

0

2

is in TC

0

.

Proof. If f is �

b

1

-de�nable in

�

R

0

2

, there is a �

b

1

-formula A(�a; b) and a term t(�a)

such that

�

R

0

2

proves 9y� t(�a)A(�a; y). Then by Thm. 5 there is a function g 2 TC

0

such that g(�a) witnesses this. But then (g(�a))

2

satis�es A(�a; (g(�a))

2

) for every

�a, and hence f(�a) = (g(�a))

2

, and thus f 2 TC

0

. ut

Together with Thm. 4 we get the characterization of the functions in TC

0

:

Theorem7. The �

b

1

-de�nable functions in

�

R

0

2

are exactly those in TC

0

.

5 Conclusion

We have characterized the class TC

0

as the �

b

1

-de�nable functions in

�

R

0

2

. From

this characterization, we can conclude things like

If

�

R

0

2

= R

1

2

, then TC

0

= NC, and

�

R

0

2

= S

1

2

implies TC

0

= FP .

or, viewed from a di�erent perspective:

Under the hypothesis that TC

0

6= FP (or TC

0

6= NC), S

1

2

(resp. R

1

2

) is

not conservative over

�

R

0

2

w.r.t. 8�

b

1

-sentences.

In [6], a theory TTC

0

is de�ned that also yields a characterization of TC

0

.

For the purpose of comparison, we recall the de�nition of TTC

0

: The language

is the same as that of

�

R

0

2

. To state its axioms we �rst need a technical de�nition:

A formula A is called essentially sharply bounded , or esb, in a theory T , if A

is in the smallest class � of formulae s.t.

(i) every atomic formula is in � .

(ii) � is closed under propositional connectives and sharply bounded quanti�ca-

tion.

(iii) if A(�x; y) and B(�x; y) are in � , and 8y; z� t(�x) A(�x; y) ^ A(�x; z) ! y = z

and 8�x 9y� t(�x) A(�x; y) are provable in T , then the formulae

9y� t(�x) A(�x; y) ^B(�x; y) and 8y� t(�x) A(�x; y)! B(�x; y)

are in � .



Now the theory TTC

0

is given by the BASIC axioms, esb-LIND and the

esb-comprehension scheme, i.e. TTC

0

is the least theory T that contains the

basic axioms and has the property that whenever A(x) is esb in T , then

A(0) ^ 8x (A(x) ! A(x+ 1)) ! 8x A(jxj)

and

9y<2

jtj

8i< jtj (Bit(y; i) = 1$ A(i))

are axioms of T .

The theory TTC

0

characterizes TC

0

in the following way: TC

0

coincides with

the class of esb-de�nable functions in TTC

0

. Compared to this characterization,

the one in the present paper is, in the author's opinion, much more natural.

First, the notion of �

b

1

-de�nability is a more useful one than that of esb-

de�nability, since it delineates the functions in TC

0

among a probably larger

class of functions (those whose graph is in NP vs. those whose graph is in TC

0

).

This might be easily remedied since it could be the case that the �

b

1

-de�nable

functions of (some extension of) TTC

0

also coincide with TC

0

.

But second, the theory TTC

0

itself has a quite cumbersome de�nition. We

think that the axiomatization of a theory should be such that the set of axioms

is easily decidable. This is not the case with TTC

0

: It seems that for a 8�

b

1

-

sentence, determining whether it is an axiom of TTC

0

is as di�cult as deciding

its provability in TTC

0

.

There is of course the possibility that TTC

0

is equivalent to

�

R

0

2

, but this

seems to be unlikely, or at least di�cult to prove, in view of the following fact:

A crucial step in the obvious proof of equivalence would be to show that every

esb-formula is equivalent to a �

b

0

-formula in TTC

0

. Now the esb-formulae in

TTC

0

describe exactly the predicates in TC

0

. But in [8] it was shown that the

class of predicates de�nable by �

b

0

-formulae in (a variant of) the language of R

0

2

is a proper subclass of P . Hence a proof of equivalence as above would separate

TC

0

from P , and thus solve a di�cult open problem in Complexity Theory.
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