
Simplified and Improved Separations Between
Regular and General Resolution by Lifting

Marc Vinyals1, Jan Elffers2,4, Jan Johannsen3, and Jakob Nordström4,2

1 Technion, Haifa, Israel – marcviny@cs.technion.ac.il
2 Lund University, Sweden – jan.elffers@cs.lth.se

3 Ludwig-Maximilians-Universität München, Germany – jan.johannsen@ifi.lmu.de
4 University of Copenhagen, Denmark – jn@di.ku.dk

Abstract. We give a significantly simplified proof of the exponential
separation between regular and general resolution of Alekhnovich et al.
(2007) as a consequence of a general theorem lifting proof depth to regular
proof length in resolution. This simpler proof then allows us to strengthen
the separation further, and to construct families of theoretically very easy
benchmarks that are surprisingly hard for SAT solvers in practice.

1 Introduction

In the resolution proof system [17] the unsatisfiability of a formula in conjunctive
normal form (CNF) is shown by iteratively deriving new disjunctive clauses until
contradiction is reached (in the form of the empty clause). A resolution proof
is said to be regular [59] if along the path of derivation steps from any input
clause to contradiction every variable is eliminated, or resolved , at most once.
This condition appears quite natural, since it essentially means that intermediate
results should not be proven in a form stronger than what will later be used in
the derivation, and indeed DPLL-style algorithms [26,27] can be seen to search
for regular proofs. In view of this, it is natural to ask whether regularity can
be assumed without loss of proof power, but this was ruled out in [40]. General
resolution was shown to be superpolynomially stronger than regular resolution
in [31], a separation that was improved to exponential in [2,61]. Regular resolution
is in turn known to be exponentially stronger than tree-like resolution [11,19],
where no intermediate clause can be used for further derivations more than once.

There is an interesting connection here to the quest for a better under-
standing of state-of-the-art SAT solvers based on conflict-driven clause learning
(CDCL) [47,48].5 Tree-like resolution corresponds to solvers without any clause
learning, whereas CDCL solvers have the potential to be as strong as general
resolution [3,51]. The proofs of the latter result crucially use, among other as-
sumptions, that solvers make frequent restarts, but it has remained open whether
this is strictly needed, or whether “smarter” CDCL solvers without restarts could
be equally powerful. To model CDCL without restarts, proof systems such as pool
resolution [62] and different variants of resolution trees with lemmas (RTL) [20]

5 A similar idea in the context of CSPs was independently developed in [5].

have been introduced, which sit between regular and general resolution. Therefore,
if one wants to prove that restarts increase the reasoning power of CDCL solvers,
then formulas that could show this would, in particular, have to separate regular
from general resolution. However, all known formulas witnessing this separa-
tion [2,61] have also been shown to have short pool resolution proofs [18,21]. It is
therefore interesting to develop methods to find new formula families separating
regular and general resolution. This brings us to our next topic of lifting .

In one sentence, a lifting theorem takes a weak complexity lower bound
and amplifies it to a much stronger lower bound by simple syntactic manip-
ulations. Focusing for concreteness on Boolean functions, one can take some
moderately hard function f : {0, 1}n → {0, 1} and compose it with a gadget
g : {0, 1}m → {0, 1} to obtain the new lifted function f ◦ gn : {0, 1}mn → {0, 1}
defined as f(g(y1), g(y2), . . . , g(yn)), where yj ∈ {0, 1}m for j ∈ [n]. If the gad-
get g is carefully chosen, one can show that there is essentially no better way of
evaluating f ◦ gn than first computing g(yj) for all j ∈ [n] and then applying f
to the outputs. From this it follows that f ◦ gn is a much harder function than f
or g in isolation.

A seminal early paper implementing this paradigm is [54], and the rediscovery
and strengthening of this work has led to dramatic progress on many long-standing
open problems in communication complexity [33,34,35,37,38]. Other successful
examples of the lifting paradigm include lower bounds in monotone complexity
[52,53,58], extension complexity [32,43,45], and data structures [24]. Lifting has
also been a very productive approach in proof complexity. Interestingly, many
of the relevant papers [6,8,9,12,13,19,41,49,50] predate the “lifting revolution”
and were not thought of as lifting papers at the time, but in later works such as
[29,36,57] the connection is more explicit.

As described above, in the lifting construction different copies of the gadget g
are evaluated on disjoint sets of variables. In [55] it was instead proposed to let
the variable domains for different gadgets overlap as specified by well-connected
so-called expander graphs. This idea of recycling variables between gadgets has
turned out to be very powerful, and an ingredient in a number of strong trade-off
results between different complexity measures [15,16,56].

Our Contributions The starting point of our work is the simple but crucial
observation that the stone formulas in [2] can be viewed as lifted versions of
pebbling formulas [14] with maximal overlap, namely as specified by complete
bipartite graphs. This raises the question whether there is a lifting theorem
waiting to be discovered here, and indeed we prove that the separation in [2] can
be proven more cleanly as the statement that strong enough lower bounds on
proof depth can be lifted to exponential lower bounds on proof length in regular
resolution. This in turn implies that if one can find formulas that have short
resolution proofs with only small clauses, but that require large depth, then
lifting with overlap yields formulas that separate regular and general resolution.

This simpler, more modular proof of [2] is the main conceptual contribution
of our paper, but this simplicity also opens up a path to further improvements.
Originally, lifting with overlap was defined in [55] for low-degree expander graphs,

and we show that our new lifting theorem can be extended to this setting also.
Intuitively, this yields “sparse” versions of stone formulas that are essentially as
hard as the original ones but much smaller. We use this finding for two purposes.

Firstly, we slightly improve the separation between regular and general reso-
lution. It was known that there are formulas having general resolution proofs of
length L that require regular proofs of length exp

(
Ω
(
L/((logL)7 log logL)

))
[61].

We improve the lower bound to exp
(
Ω
(
L/((logL)3(log logL)5)

))
.

Secondly, and perhaps more interestingly from an applied perspective, sparse
stone formulas provide the first benchmarks separating regular and general
resolution that are sufficiently small to allow meaningful experiments with CDCL
solvers. Original stone formulas have the problem that they grow very big very
fast. The so-called guarded formulas in [2,61] do not suffer from this problem, but
the guarding literals ensuring the hardness in regular resolution are immediately
removed during standard preprocessing, making these formulas very easy in
practice. In contrast, sparse stone formulas exhibit quite interesting phenomena.
Depending on the exact parameter settings they are either very dependent on
frequent restarts, or very hard even with frequent restarts. This is so even
though short proofs without restarts exist, which also seem to be possible to find
algorithmically if the decision heuristic of the solver is carefully hand-coded.

Outline of This Paper After reviewing some preliminaries in Section 2, we
present our proof of [2] as a lifting result in Section 3. We extend the lower bound
to sparse stone formulas in Section 4. We conclude with brief discussions of some
experimental results in Section 5 and directions for future research in Section 6.

2 Preliminaries

Resolution Throughout this paper 0 denotes false and 1 denotes true. A literal a
is either a variable x or its negation x. A clause C is a disjunction a1 ∨ · · · ∨ ak of
literals; the width of C is k. A CNF formula F = C1 ∧ · · · ∧ Cm is a conjunction
of clauses, the size (or length) of which is m. We view clauses and CNF formulas
as sets, so order is irrelevant and there are no repetitions.

A resolution proof for (the unsatisfiability of) F , also referred to as a resolution
refutation of F , is a sequence of clauses, ending with the empty clause ⊥ containing
no literals, such that each clause either belongs to F or is obtained by applying
the resolution rule C ∨ x, D ∨ x ` C ∨D to two previous clauses. If we lay out
the proof as a graph the result is a directed acyclic graph (DAG) where each
node is labelled with a clause, where without loss of generality there is a single
source labelled ⊥, where each sink is a clause in F , and each intermediate node
can be written on the form C ∨D with edges to the children C ∨ x and D ∨ x.
The length of a refutation is the number of clauses, its width is the maximal
width of a clause in it, and its depth is the longest path in the refutation DAG.
The resolution length, width and depth of a formula are the minimum over all
resolution refutations of it.

A restriction ρ is a partial assignment of truth values to variables. We write
ρ(x) = ∗ to denote that variable x is unassigned. We obtain the restricted

clause C�ρ from C by removing literals falsified by ρ, and the restricted for-
mula F�ρ from F by removing clauses satisfied by ρ and replacing other clauses C
by C�ρ.

If a formula F has a resolution refutation π, then for every restriction ρ the
restricted formula F�ρ has a refutation π′—denoted by π�ρ—the length, width
and depth of which are bounded by the length, width and depth of π, respectively.
If π is regular, then so is π�ρ. We will need the following straightforward property
of resolution depth.

Lemma 1 ([60]). If F requires resolution depth D, then for every variable x
in F it holds for some b ∈ {0, 1} that F�{x:=b} requires resolution depth D − 1.

Branching Programs In the falsified clause search problem for an unsatisfiable
CNF formula F , the input is some (total) assignment α and a valid output is
any clause of F that α falsifies.

From a resolution refutation of F we can build a branching program for the
falsified clause search problem with the same underlying graph, where every
non-source node queries a variable x and has outgoing edges 0 and 1, and where
any assignment α leads to a sink labelled by a clause that is a valid solution to
the search problem for F . We maintain the invariant that an assignment α can
reach a node labelled by C if and only if α falsifies C—in what follows, we will
be slightly sloppy and identify a node and the clause labelling it. In order to
maintain the invariant, if a node C ∨D has children C ∨ x and D ∨ x, we query
variable x at that node, move to the child with the new literal falsified by the
assignment to x, and forget the value of any variable not in this child. A proof is
regular if and only if it yields a read-once branching program, where any variable
is queried at most once along any path, and it is tree-like if it yields a search tree.

Pebbling Formulas Given a DAG H of indegree 2 with a single sink, the
pebbling formula over H [14], denoted PebH , has one variable per vertex, a
clause u for each source u, a clause u ∨ v ∨ w for each non-source w with
predecessors u and v, and a clause z for the sink z.

Pebbling formulas over n-vertex DAGs H have short, small-width refutations,
of length O(n) and width 3, but may require large depth. More precisely, the
required depth coincides with the so-called reversible pebbling number of H [22],
and there exist graphs with pebbling number Θ(n/ log n) [30]. We will also need
that so-called pyramid graphs have pebbling number Θ(

√
n) [23,25].

Lifting We proceed to define lifting with overlap inspired by [55]. Let F be a
formula with n original variables xi. We have m new main variables rj , which we
often refer to as stone variables. Let G be a bipartite graph of left degree d and
right degree d′ with original variables on the left side and main variables on the
right side. We have dn new selector variables si,j , one for each edge (i, j) in G.

For convenience, let us write y1 = y and y0 = y for the positive and negative
literals over a variable y. Then the lifting of xbi for b ∈ {0, 1} is the conjunction
of d clauses LG(xbi) =

∧
j∈N(i) si,j ∨ rbj . The lifting of a clause C of width w

is the expression LG(C) =
∨
xbi∈C

LG(xbi), expanded into a CNF formula of

width 2w and size dw. The lifting of a CNF formula F is the formula LG(F) =∧
C∈F LG(C) ∧

∧
i∈[n]

∨
j∈N(i) si,j of size at most dw|F | + n. We will omit the

graph G from the notation when it is clear from context.
If G is a disjoint union of stars, then we obtain the usual lifting defined in [7],

and if G is a complete bipartite graph with m ≥ 2n and F is a pebbling formula,
then we obtain a stone formula [2]. We will need the fact, implicit in [13], that
formulas with short, small-width refutations remain easy after lifting.

Lemma 2. Let π be a resolution refutation of F of length L and width w, and
let G be a bipartite graph of left degree d. Then there is a resolution refutation of
LG(F) of length O(dw+1L).

For the particular case of pebbling formulas, where there is a refutation where
each derived clause is of width at most 2 even if some axioms are of width 3, the
upper bound can be improved to O

(
d3L

)
.

Graphs In Section 3, we use complete bipartite graphs to reprove the known
lower bounds on stone formulas. In Section 4, we consider bipartite random
graphs sampled from the G(n,m, d) distribution, where the left and right sides
U and V have n and m vertices respectively, and d right neighbours are chosen
at random for each left vertex.

A bipartite graph is an (r, κ)-expander if every left subset of vertices U ′ ⊆ U of
size |U ′| ≤ r has at least κ|U ′| neighbours. It is well-known (see for instance [39])
that random graphs are good expanders.

Lemma 3. With high probability a graph G ∼ G(n,m, d) with d = Θ(log(n/m))
is an (r, κ)-expander with κ = Θ(d), r = Θ(m/κ), and right degree d′ ≤ 2dn/m.

The following lemma, as well as its proof, is essentially the same as Lemmas 5
and 6 in [1] but adapted to vertex expansion.

Lemma 4. If G is an (r, κ)-expander, then for every set V ′ ⊆ V of size at
most κr/4 there exists a set U ′ ⊆ U of size at most r/2 such that the graph
G \ (U ′ ∪ N(U ′) ∪ V ′) obtained from G by removing U ′, N(U ′), and V ′ is an
(r/2, κ/2)-expander.

Matchings and the Matching Game A matching µ in a bipartite graph is
a set of vertex-disjoint edges. We write µ(u) = v if the edge (u, v) is in µ. The
matching game [10] on a bipartite graph is played between two players Prover
and Disprover, with r fingers each numbered 1, . . . , r. In each round:

– either Prover places an unused finger i on a free vertex u ∈ U , in which case
Disprover has to place his i-th finger on a vertex v ∈ N(u) not currently
occupied by other fingers;

– or Prover removes one finger i from a vertex, in which case Disprover removes
his i-th finger.

Prover wins if at some point Disprover cannot answer one of his moves, and
Disprover wins if the game can continue forever.

Theorem 5 ([10, Theorem 4.2]). If a graph is an (r, 1+δ)-bipartite expander,
then Prover needs at least δr/(2 + δ) fingers to win the matching game.

3 Lower Bound for Stone Formulas as a Lifting Theorem

We reprove the result in [2] by reinterpreting it as a lifting theorem.

Theorem 6. If F has resolution depth D and m ≥ 2D, then LG(F) for G the
complete bipartite graph Kn,m has regular resolution length exp(Ω(D2/n)).

When we choose as F the pebbling formula of a graph of pebbling number
Ω(n/ log n) [30] we reprove the result in [2], slightly improving the lower bound
from exp(Ω(n/ log3 n)) to exp(Ω(n/ log2 n)).

Corollary 7. There are formulas that have general resolution refutations of
length O(n4) but require regular resolution length exp(Ω(n/ log2 n)).

We start with an overview and a few definitions common to this and the
next section. The proof at a high level follows a common pattern in proof
complexity: given some complexity measure on clauses, we apply a restriction to
the resolution refutation that removes all complex clauses from a short enough
proof. In a separate argument, we show that the restricted formula always requires
complex clauses, contradicting our assumption of a short refutation.

To build a restriction we use the following concepts. Let µ : I → J be a partial
matching from original to stone variables. A matching µ induces an assignment
ρ to selector variables as follows.

ρ(si,j) =

1 if µ(i) = j,

0 if i ∈ dom(µ) or j ∈ im(µ) but µ(i) 6= j,

∗ otherwise.

We say that an assignment ρ whose restriction to selector variables is of this
form respects the lifting because LG(F)�ρ = LG′(F�σ), where G′ is the induced
subgraph G[(I \ domµ) ∪ (J \ imµ)] and σ is the induced assignment to original
variables σ(xi) = ρ(rµ(i)) if i ∈ dom(µ), and σ(xi) = ∗ otherwise. An assignment
that respects the lifting is uninformative if it induces an empty assignment to
original variables, that is ρ(rj) = ∗ whenever j ∈ imµ. Given an uninformative
assignment ρ and an assignment to original variables σ, we can extend the former
to agree with the latter as ρ(rj) = σ(xµ−1(j)) if j ∈ imµ and ρ(rj) = ∗ otherwise.
The size of an assignment is the maximum of the size of the matching and the
number of assigned stone variables.

A helpful complexity measure is the width of a clause; we use a complexity
measure from [2] that enforces an additional structure with respect to the lifting.

Definition 8. A clause C is (c, z)-complex if either

1. C contains at least c stone variables,
2. there is a matching µ of size c such that C contains the literal si,j for each

(i, j) ∈ µ, or
3. there is a set W of size c where C contains at least z literals si,j for each

i ∈W .

In this section we only use (c, c)-complex clauses, which we refer to as c-
complex. Note that c can range from 1 to m. We also need the following lemma,
which can be established by a straightforward calculation.

Lemma 9. Consider a set of s clauses C and a set of n possibly dependent
literals L such that after setting ln(s)n/p literals in L (plus any dependencies),
for each clause C ∈ C there is a subset LC ⊆ L of at least p literals, each of
which satisfies C. Then there is a set of ln(s)n/p literals that satisfies C.

From now on we assume that G is the complete bipartite graph Kn,m. The
first step is to show that we can remove all complex clauses from a short proof.

Lemma 10. There exists ε > 0 such that if π is a resolution refutation of L(F)
of size s = exp(εc3/mn), then there exists an uninformative restriction ρ of
size c/2 such that π�ρ has no c-complex clauses.

Proof. We build a restriction greedily. First we choose a matching µ so that after
setting the corresponding selector variables with the restriction ρ induced by
µ we satisfy all c-complex clauses of type 2 and 3 in Definition 8. There are
mn positive selector literals sij . A clause of type 2 is satisfied if we set one of c
variables si,j = 0, and that happens if we assign a literal sij′ = 1 with j′ 6= j, for
a total of c(m− 1) ≥ c2 choices. A clause of type 3 is satisfied if we set one of
c2 literals si,j = 1. After picking k pairs to be matched there are still at least
(c− k)(m− k − 1) ≥ (c− k)2 literals available to satisfy clauses of type 2, and
(c− k)2 literals available to satisfy clauses of type 3, so we can apply Lemma 9
and obtain that setting q ≤ ln(s)mn/(c2/4) literals is enough to satisfy all such
clauses. Note that we used that k ≤ ln(s)mn/(c2/4) ≤ c/2.

Next we extend ρ to ρ′ by setting some stone variables that are untouched
by µ so that we satisfy all clauses of type 1. There are m − q such variables,
hence at most 2m literals, and a clause is satisfied when one of c variables is
picked with the appropriate polarity. After picking k literals there are at least
c− q − k ≥ c/2− k choices left for each clause, so we can apply Lemma 9 and
get that setting q′ = log sm/(c/8) variables is enough to satisfy all clauses of
type 1. Note that we used that k ≤ ln(s)m/(c/8) ≤ c/4, which follows from
ln(s) ≤ c2/16m ≤ c3/16mn.

The size of the restriction ρ′ is then at most c/2. ut

Next we show that regular resolution proofs always contain a complex clause.

Lemma 11. If F requires depth D, then any regular resolution refutation of
L(F) with m < D has an m/4-complex clause.

Proof. We build a path through the read-once branching program corresponding
to the proof, using a decision tree T for F of depth D to give the answers to
some queries. We also keep a matching µ, with the invariant that there is an
edge (i, j) in the matching if and only if sij = 1 or there are m/4 stones j′ 6= j
such that sij′ = 0. We can do so using the following strategy as long as at most
m/4 stones are assigned and at most m/4 stones are matched.

– If the adversary queries sij then if neither i nor j are matched we answer
1 and add (i, j) to the matching, if µ(i) = j we answer 1, and otherwise we
answer 0. If more than m/4 variables sij′ are 0 (for i fixed and j′ ∈ [m]) we
choose one of the m/4 stones j′′ that are not assigned, nor matched, nor have
sij′′ = 0 and add (i, j′′) to the matching.

– If the adversary queries rj and j is matched to i, we answer b so that the
depth of T only shrinks by 1 when original variable xi is set to b, as given
by Lemma 1. Otherwise we answer arbitrarily.

– If the adversary forgets a variable and there is an edge in the matching that
does not respect the invariant, we remove it.

Assume for the sake of contradiction that we never reach an m/4-complex
clause. Then we can maintain the invariant until we reach a leaf of the branching
program, and that leaf never falsifies a clause of the form

∨
j∈[m] si,j . It follows

that the path ends at a clause from L(D), at which point the depth of T reduced
to 0. Observe that the depth of T only decreases by 1 when a stone variable is
queried and that, since the branching program is read-once, these queries must
be to D different stones, but only m < D stones are available. ut

We use these lemmas to complete the plan outlined at the beginning of this
section and prove our lifting theorem.

Proof (of Theorem 6). Assume for the sake of contradiction that π is a refutation
of L(F) of length less than exp(δD2/n), where δ = ε/1024 for the ε of Lemma 10.

We invoke Lemma 10 with c = D/8 to obtain that there is an uninformative
restriction ρ of size D/16 such that π�ρ has no D/8-complex clauses. By Lemma 1
we can assign values to the matched stones in a way that the induced assignment
to original variables σ yields a formula of depth 15D/16. We additionally assign
all but the first 15D/16− 1 stones arbitrarily and set all selector variables that
point to an assigned stone to 0. Let ρ′ be the new restriction.

The formula F ′ = L(F)�ρ′ is the lifted version of a formula F�σ of depth
D′ = 15D/16 with m′ = D′ − 1 stones, hence by Lemma 11 any refutation
of F ′ has an m′/4-complex clause. But since m′/4 ≥ 15D/64 − 1 > D/8, this
contradicts the fact that the refutation π�ρ′ has no D/8-complex clauses. ut

4 Lower Bound for Sparsely Lifted Formulas

We now generalize the lifting to sparse graphs. The first step is again to show
that we can remove all complex clauses from a short proof, but this becomes a
harder task so let us begin with an informal overview. Say that we start with a
lifted formula whose selector variable graph is an expander and, as in Lemma 10,
we want to make a few stones be assigned and a few stones be matched. After we
remove these stone vertices from the graph, it will likely stop being an expander
(e.g. because we will likely remove all the neighbours of some vertex).

Fortunately by Lemma 4 given a subset V ′ of right vertices to remove there is
a subset U ′ of left vertices such that removing V ′, U ′, and N(U ′) from the graph

yields an expander, but this is still not enough because removing U ′ forces us to
a matching that may interfere with our plans. Maybe there is some vertex i ∈ U ′
corresponding to an original variable that we want to assign to 0 but all of its
neighbours are assigned to 1, or maybe there is some original variable i ∈ U ′ all
of whose neighbours are already matched to other original variables.

Our solution is to add one backup vertex for each stone vertex j, so that we
can delay the expansion restoring step. Of course we cannot decide beforehand
which vertices are primary and which are backup, otherwise it might be that
all complex clauses would talk only about backup vertices and our assignment
would not affect them, so we have to treat primary and backup vertices equally.
But still we make sure that if a vertex j is assigned 1, then its backup is assigned
0 and viceversa, taking care of the first problem; and that if a stone vertex j is
matched to some original variable i then its backup is still free and viceversa,
taking care of the second problem.

To make the concept of backup vertices formal, we say that a bipartite graph
G of the form U ∪(V0∪V1) is a mirror if the subgraphs G0(U ∪V0) and G1(U ∪V1)
are isomorphic, which we also refer to as the two halves of G.

We can state our sparse lifting theorem using the concept of mirror graphs.

Theorem 12. If F has resolution depth D, and G is a mirror graph with G0 ∼
G(n,D/2, d), where d = Θ(log(n/D)), then with high probability LG(F) has
regular resolution length exp(Ω(D3/d2n2)).

As before, if we choose for F the pebbling formula of a graph of pebbling
number Θ(n/ log n), then we get the following improved separation of regular
and general resolution.

Corollary 13. There are formulas that have general resolution refutations of
length O(n log log3 n) but require regular resolution length exp(Ω(n/ log3 n log log2 n)).

Let us establish some notation. After fixing an isomorphism Ψ : G0 → G1

we name the vertices in pairs j0 and j1 so that j1 = Ψ(j0). If jb ∈ Vb and
a ∈ {0, 1}, we let jb + a denote the vertex j(a + b mod 2) ∈ Va+b mod 2. Let
m = |V0| so there are 2m right vertices in G. In this section c-complex stands for
(c, 1)-complex and we assume that d = Θ(log(n/m)).

Lemma 14. If G is a mirror (r, κ)-expander with κ > 2, where κr = Θ(m), and
π is a resolution proof of LG(F) of size s = exp(O(c2m/d2n2)), where c = Θ(m),
then there is a restriction ρ such that π�ρ is a proof of LG′(F ′) that has no
c-complex clauses, where F ′ has resolution depth at least D − r/2− κr/8 and G′

is an (r/2, κ/2)-expander.

Proof. We show that such a restriction exists using a hybrid between a random
and a greedy restriction. We randomly partition the stone vertices in V0 into free,
assigned, and matched stones, and mirror the partition in V1. Of the assigned
stones, a set A−0 of κr/16 stones are set to 0, and a set A+

0 of κr/16 stones are set
to 1, while the stones in the corresponding sets A−1 = ψ(A−0) and A+

1 = ψ(A+
0) are

set to 1 and 0 respectively. We plan to use the sets M0 and M1 = ψ(M0) of κr/8

matched stones each to greedily build a matching. The remaining 2(m− κr/4)
stone vertices are tentatively left untouched.

First we claim that, with high probability, all clauses of type 1 are satisfied.
To show this we note that a clause C of type 1 contains at least c/4 literals of
the same polarity and referring to the same half of the graph. Assume without
loss of generality that C contains c/4 positive literals referring to stones in V0
and let C+

0 = {j0 ∈ V0 : rj0 ∈ C} be these stones.
The probability that no positive stone literal is satisfied is

Pr[C+
0 ∩A

+
0 = ∅] ≤

(|V0\C+
0 |

|A+
0 |

)
(|V0|
|A+

0 |

) ≤ (1−c/4m)κr/16 = exp(−Ω(κr)) = exp(−Ω(m))

and since ln s = O
(
c2m/d2n2

)
= O

(
m(c2/d2n2)

)
= o(m) the claim follows from

a union bound over all clauses of type 1.
Next we greedily build a matching µ with the goal of satisfying all clauses of

types 2 and 3. We ensure that overlaying both halves of the matching would also
result in a matching; in other words if a vertex jb is matched then we ensure
that jb+ 1 is not. For each edge (i, jb) in the matching we set si,jb = 1, we set
si′,jb = 0 and si,j′b′ = 0 for all i′ 6= i, j′ 6= j, and b′ ∈ {0, 1}, and we leave si,jb+1

tentatively unset for all i. Before we actually build the matching we need to prove
that, with high probability, each of these clauses can be satisfied by choosing one
of cκr/32m edges (i, jb) with j ∈Mb to be in the matching.

For a clause C of type 3 we assume without loss of generality that c/2 literals
refer to stones in V0. We can express the number of edges that satisfy C as
the random variable xC =

∑
j0∈V0

xC,j0 where xC,j0 takes the value tC,j0 =
|{(i, j0) ∈ E : si,j0 ∈ C}| if j0 ∈M0 and 0 otherwise. We have that

EC = E[xC] =
∑
j0∈V0

E[xC,j0] =
∑
j0∈V0

tC,j0 · Pr[j0 ∈M0] =

=
|M0|
m

∑
j0∈V0

tC,j0 ≥
κr

8m
· c

2
=

cκr

16m
= Θ(c)

and each of xC,j is bounded by the right degree d′ ≤ 2dn/m, therefore by
Hoeffding’s inequality for sampling without replacement we obtain that

Pr[xC < EC/2] ≤ exp

(
−2

(EC − EC/2)2∑
j0∈V0

t2C,j0

)
= exp(−Ω(c2/d′c)) = exp(−Ω(cm/dn))

and the claim follows from a union bound over all clauses of type 3.
For clauses of type 2, for each literal si,j0 ∈ C it is enough to choose as an

edge one of the (d− 1) edges (i, j′0) with j′ 6= j. Hence the number of available
choices is the random variable xC defined as before except that tC,j0 = |{(i, j0) ∈
E0 : ∃j′ ∈ V0 \{j} , si,j′ ∈ C}|. We have EC = E[xC] ≥ (d−1)cκr/16m therefore
Pr[xC < EC] = exp(−Ω(cm/n)) and the claim follows from a union bound.

Let us finish this step of the proof by building the matching. Observe that
choosing an edge makes up to d+ d′ incident edges ineligible, as well as up to

d+ d′ edges in the other half, for a total of 2(d+ d′) ≤ 5d′, hence after making
` choices there are still e(`) = cκr/32 − 5`d′ choices available for each clause.
By averaging, there is an edge that satisfies at least an e(`)/dn fraction of the
clauses of types 2 and 3. Hence after picking

k = e−1(cκr/64m) =
cκr/64m

5d′
≤ cκr

320dn

edges the remaining fraction of clauses is at most

k∏
`=1

(
1− e(`)

dn

)
≤
(

1− e(k)

dn

)k
=

(
1− cκr

64mdn

) cκr
320dn

= exp

(
−Ω

(
c2m

d2n2

))
.

The last step is to ensure that after removing V ′0 = A0 ∪M0 from G0 we
still have a good expander. By Lemma 4 there is a set U ′ of size r/2 such
that G0 \ U ′ ∪N(U ′) ∪ V ′0 is an (r/2, κ/2)-expander. Let U ′′ = U ′ \ domµ. Let
ν : U ′′ → V0 be an injective mapping from indices to stones, which exists by
Hall’s theorem, and let σ : U ′′ → {0, 1} be an assignment to U ′′ such that the
depth of F�σ reduces by at most |σ|.

We match each vertex i ∈ U ′′ to a stone as follows. If ν(i) ∈ A−0 then
rν(i)+σ(i) = σ(i) so we set si,ν(i)+σ(i) = 1, while if ν(i) ∈ A+

0 then rν(i)+σ(i) =
1− σ(i) so we set si,ν(i)+σ(i)+1 = 1. If ν(i) ∈M0 then note that by construction
of the matching µ at least one of ν(i) and ν(i) + 1 is not matched; we let jb be
that stone and set si,jb = 1 and rjb = σ(i). Otherwise we add ν(i) to M0 and
ν(i) + 1 to M1, and do as in the previous case.

We also assign values to matched stones. Let domµ be the matched original
variables and let τ : domµ → {0, 1} be an assignment to domµ such that
the depth of F�σ∪τ reduces by at most |τ |. For each vertex i ∈ domµ we
set rµ(i) = τ(i). To obtain our final graph we set to 0 any variable si,j with
i ∈ U ′ ∪ domµ or j ∈ V ′0 ∪N(U ′) ∪ V1 that remains unassigned.

Let us recap and show that LG(F)�ρ = LG′(F ′) where G′ is an expander
and F ′ has large depth as we claimed. G′ is the subgraph of G induced by
U \ (U ′ ∪ domµ) and V0 \ (V ′0 ∪ N(U ′)), since we did not assign any selector
variable corresponding to an edge between these two sets, but we did assign every
other selector variable. The graph induced by U \ U ′ and V0 \ (V ′0 ∪N(U ′)) is
an (r/2, κ/2)-expander by Lemma 4, and since removing left vertices does not
affect expansion, so is G′. Regarding F ′, for every variable si,j = 1 we have that
rj = (σ ∪ τ)(i), so F ′ = F�σ∪τ which has depth at least D − r/2− κr/8. ut

To prove an equivalent of Lemma 11 we use the extended matching game,
where we allow the following additional move:

– Prover places an unused finger i on a free vertex v ∈ V , in which case
Disprover places his i-th finger on v and optionally moves Prover’s finger to
a free vertex u ∈ N(v).

Lemma 15. If Prover needs p fingers to win the matching game on a graph of
right degree d′, then it needs p− d′ fingers to win the extended matching game.

The proof can be found in the forthcoming full version.
Finally we are ready to prove our last lemma and complete the proof.

Lemma 16. If F has resolution depth D, and G is a bipartite graph whose right
hand side is of size m < D, duch that G requires r fingers in the extended matching
game, then any regular resolution refutation of LG(F) has an r/3-complex clause.

Proof. At a high level we proceed as in the proof of Lemma 11, except that
now keeping a matching is a more delicate task, and hence we use the extended
matching game for it. We want to match any index i for which we have information
about, this is the value of a variable si,j is remembered.

– If the adversary queries rj and µ(i) = j for some i, then we answer so that
the depth of the decision tree only shrinks by 1.

– If the adversary queries rj where j is not in the matching, then we play j in
the matching game. If we receive an answer i we add (i, j) to the matching
and answer so that the depth of the decision tree only shrinks by 1. If instead
we receive the answer j, we answer arbitrarily.

– If the adversary queries si,j where either i or j are in the matching then we
answer 1 if (i, j) is in the matching and 0 otherwise.

– If the adversary queries si,j where neither i nor j are in the matching then
we play i in the matching game and receive an answer j′. We add (i, j′) to
the matching and answer 1 if j = j′ and 0 otherwise.

– If after the adversary forgets a variable there is an index i such that µ(i) = j
but none of si,j′ and rj are assigned, we forget i in the matching game.

Assume for the sake of contradiction that Prover does not win the matching
game. It follows that the branching program ends at a clause in L(D) for D ∈ F ,
at which point the depth of T reduced to 0. Observe that the depth of T only
decreases by 1 when a stone variable is queried and that, since the branching
program is read-once, these queries must be to D different stones. However, only
m < D stones are available.

It follows that Prover eventually uses r fingers in the matching game, at
which point we claim that we are at an r/3-complex clause. Let us see why. For
each finger i in the matching game we remember either a selector literal si,j = 1,
a selector literal si,j = 0, or a stone variable rj , hence we remember at least
r/3 variables of either type. In the first case we are at a clause of type 2, in the
second at a clause of type 3, and in the third at a clause of type 1. ut

Proof (of Theorem 12). By Lemma 3, with high probability G0 is an (r, κ)-
expander for r = Θ(m/d) and κ = Θ(d), and has right degree at most 2dn/m.
Assume for the sake of contradiction that π is a refutation of LG(F) of length
less than exp(εD3/d2n2).

Let ρ be the restriction given by Lemma 14 so that π�ρ is a regular resolution
proof with no c-complex clauses with c = κr/75 = Θ(m). The formula L(F)�ρ is

the lifted version LG′(F ′) of a formula F ′ of depth at least D − r/2− κr/8, and
the graph G′ is an (r/2, κ/2)-expander with m′ ≤ m− κr/8 ≤ D − r/2− κr/8.

Since for each set U of size at most κr/8 and subset U ′ ⊆ U of size |U | ·4/κ ≤ r/2
it holds that |N(U)| ≥ |N(U ′)| ≥ κ/2|U ′| = 2|U |, G′ is also a (κr/8, 2)-expander,
hence by Theorem 5 and Lemma 15 G′ requires κr/24 − d′ ≥ κr/25 fingers
in the extended matching game. By Lemma 11 any regular resolution proof of
LG′(F ′) has a κr/75-complex clause. But this contradicts that the proof π�ρ has
no κr/75-complex clauses. ut

It would also be interesting to prove a lower bound with plain random graphs,
not relying on the additional mirror structure. Unfortunately, without backup
vertices, the expansion restoring step would make r/2 right vertices ineligible
to be matched, and that can prevent us from satisfying clauses of type 3 of
complexity up to d′r/2� m.

5 Experiments

We have run some experiments to investigate how hard sparse stone formulas are
in practice and how restarts influence solvers running on this particular family.

As base formulas we use pebbling formulas over Gilbert–Tarjan graphs with
butterflies [30,42], which require depth Θ(n/ log2 n), and over pyramid graphs,
which require depth Θ(

√
n). Note that lifting the first type of formulas yields

benchmarks that are provably hard for regular resolution, whereas for the second
type of formulas we are not able to give any theoretical guarantees. Our experi-
mental results are very similar, however, and so below we only discuss formulas
obtained from pyramids, for which more benchmarks can be generated.

We used an instrumented version [28] of the solver Glucose [4] to make it
possible to experiment with different heuristics. The results reported here are for
the settings that worked best, namely VSIDS decision heuristic and preprocessing
switched on. To vary the restart frequency we used Luby restarts with factors 1,
10, 100, and 1000 plus a setting with no restarts. The time-out limit was 24 hours.
For the record, we also ran some preliminary experiments for standard Glucose
(with adaptive restarts) and Lingeling [46], but since the results were similar to
those for Luby restarts with a factor 100 we did not run full-scale experiments
with these configurations.

We illustrate our findings in Figure 1 by plotting results from experiments
using the pebbling formula over a pyramid graph of height 12 as the base formula
and varying the number of stones. We used random graphs of left degree 6 as
selector variable graphs. Note that once the pebbling DAG for the base formula
has been fixed, changing the number of stones does not change the size of the
formula too much. For the particular pebbling DAG in Figure 1, the number of
variables is in the interval from 550 to 650.

Empirically, the formulas are hardest when the number of stones is close
to the proof depth for the base formula, which is also the scenario where the
calculations in Section 4 yield the strongest bound. We expect the hardness to
increase as the number of stones approaches from below the proof depth of the
base formula, but as the number of stones grow further the formulas should get

103

104

105

106

107

108

10 20 30 40 50 60 70 80 90

#
C
on

fli
ct
s
be

fo
re

so
lv
in
g

Stones

vsids, luby
vsids, 100luby

vsids, no restarts
custom 1, no restarts
custom 2, no restarts

(a) # Conflicts

102

103

104

105

106

107

10 20 30 40 50 60 70 80 90

#
R

es
ta

rt
s

be
fo

re
so

lv
in

g

Stones

luby
10luby

100luby
1000luby

(b) # Restarts

Fig. 1: Solving stone formulas over a pyramid of height 12.

easier again. This is so since the fact that the selector graph left degree is kept
constant means that the overlap decreases and ultimately vanishes, and pebbling
formulas lifted without overlap are easy for regular resolution.

Interestingly, the solver behaviour is very different on either side of this
hardness peak. As we can see on the left in Figure 1a, in the beginning the
number of conflicts (and hence the running time) grows exponentially in the
number of stones, independently of the number of restarts. With more stones,
however, restarts become critical. The number of restarts used to solve a particular
instance remains similar among all solver configurations, as shown on the right
in Figure 1b. Therefore, if the solver restarts more frequently it reaches this
number of restarts faster and solves the formula faster, as shown by the conflict
counts on the right in Figure 1a.

To make CDCL solvers run as fast as possible, we crafted a custom decision or-
der tailored to stone formulas over pyramids. With this decision order, no restarts,
and very limited clause erasures, the solver decided dense stone formulas over
pyramids of height h with h stones in a number of conflicts proportional to h7.28

(where we note that these formulas have O
(
h3
)

variables and O
(
h5
)

clauses). For
sparse stone formulas, we found one decision order (custom 1 in Figure 1a) that
worked reasonably well for small pyramids but failed for larger ones. A second
attempt (custom 2) performed well for all pyramid sizes as long as the number
of stones was below the hardness peak, but failed for more stones (when the
formulas become easy for VSIDS with frequent restarts).

Summing up, even though stone formulas always possess short resolution
refutations, and even though CDCL solvers can sometimes be guided to decide the
formulas quickly even without restarts, these formulas can be surprisingly hard
in practice for state-of-the-art solvers with default heuristics. The frequency of
restarts seems to play a crucial role—which is an interesting empirical parallel of
the theoretical results in [3,51]—but for some settings of stone formula parameters
even frequent restarts cannot help the solver to perform well.

6 Concluding Remarks

In this work we employ lifting, a technique that has led to numerous breakthroughs
in computational complexity theory in the last few years, to give a significantly
simplified proof of the result in [2] that general resolution is exponentially more
powerful than regular resolution. We obtain this separation as a corollary of a
generic lifting theorem amplifying lower bounds on proof depth to lower bounds
on regular proof length in resolution. Thanks to this new perspective we are also
able to extend the result further, so that we obtain smaller benchmark formulas
that slightly strengthen the parameters of the previously strongest separation
between regular and general resolution in [61].

Furthermore, these new formulas are also small enough to make it possible to
run experiments with CDCL solvers to see how the running time scales as the
formula size grows. Our results show that although these formulas are theoretically
very easy, and have resolution proofs that seem possible to find for CDCL solvers
without restarts if they are given guidance about which variable decisions to
make, in practice the performance depends heavily on settings such as frequent
restarts, and is sometimes very poor even for very frequent restarts.

Our main result implies that if we can find CNF formulas that have resolution
proofs in small width but require sufficiently large depth, then lifted versions of
such formulas separate regular and general resolution. (This is so since proof width
can only increase by a constant factor after lifting, and small-width proofs have
to be short in general resolution by a simple counting argument.) Unfortunately,
the only such formulas that are currently known are pebbling formulas. It would
be very interesting to find other formulas with the same property.

Also, it would be desirable to improve the parameters of our lifting theorem. A
popular family of pebbling graphs are pyramids, but the proof depth for pebbling
formulas based on such graphs is right below the threshold where the lower bound
amplification kicks in. Could the analysis in the proof of the lifting theorem be
tightened to work also for, e.g., pebbling formulas over pyramids?

On the applied side, it is intriguing that sparse stone formulas can be so hard
in practice. One natural question is whether one could find some tailor-made
decision heuristic that always makes CDCL solvers run fast on such formulas,
with or even without restarts. An even more relevant question is whether some
improvement in standard CDCL heuristics could make state-of-the-art solvers
run fast on these formulas (while maintaining performance on other formulas).

Acknowledgements We are most grateful to Robert Robere for the interesting
discussions that served as the starting point for this project. We also acknowledge
the important role played by the Dagstuhl seminar 18051 “Proof Complexity,”
where some of this work was performed. Our computational experiments were
run on resources provided by the Swedish National Infrastructure for Computing
(SNIC). Our benchmarks were generated using the tool CNFgen [44].

The first author was supported by the Prof. R Narasimhan post-doctoral
award. The second and fourth authors were funded by the Swedish Research
Council (VR) grant 2016-00782. The fourth author was also supported by the
the Independent Research Fund Denmark (DFF) grant 9040-00389B.

References

1. Alekhnovich, M., Hirsch, E.A., Itsykson, D.: Exponential lower bounds for the
running time of DPLL algorithms on satisfiable formulas. Journal of Automated
Reasoning 35(1–3), 51–72 (Oct 2005), preliminary version in ICALP ’04

2. Alekhnovich, M., Johannsen, J., Pitassi, T., Urquhart, A.: An exponential separation
between regular and general resolution. Theory of Computing 3(5), 81–102 (May
2007), preliminary version in STOC ’02

3. Atserias, A., Fichte, J.K., Thurley, M.: Clause-learning algorithms with many
restarts and bounded-width resolution. Journal of Artificial Intelligence Research
40, 353–373 (Jan 2011), preliminary version in SAT ’09

4. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers.
In: Proceedings of the 21st International Joint Conference on Artificial Intelligence
(IJCAI ’09). pp. 399–404 (Jul 2009)

5. Bayardo Jr., R.J., Schrag, R.: Using CSP look-back techniques to solve real-world
SAT instances. In: Proceedings of the 14th National Conference on Artificial
Intelligence (AAAI ’97). pp. 203–208 (Jul 1997)

6. Beame, P., Beck, C., Impagliazzo, R.: Time-space tradeoffs in resolution: Super-
polynomial lower bounds for superlinear space. SIAM Journal on Computing 45(4),
1612–1645 (Aug 2016), preliminary version in STOC ’12

7. Beame, P., Huynh, T., Pitassi, T.: Hardness amplification in proof complexity.
In: Proceedings of the 42nd Annual ACM Symposium on Theory of Computing
(STOC ’10). pp. 87–96 (Jun 2010)

8. Beame, P., Pitassi, T., Segerlind, N.: Lower bounds for Lovász–Schrijver systems
and beyond follow from multiparty communication complexity. SIAM Journal on
Computing 37(3), 845–869 (2007), preliminary version in ICALP ’05

9. Beck, C., Nordström, J., Tang, B.: Some trade-off results for polynomial calculus.
In: Proceedings of the 45th Annual ACM Symposium on Theory of Computing
(STOC ’13). pp. 813–822 (May 2013)

10. Ben-Sasson, E., Galesi, N.: Space complexity of random formulae in resolution.
Random Structures and Algorithms 23(1), 92–109 (Aug 2003), preliminary version
in CCC ’01

11. Ben-Sasson, E., Impagliazzo, R., Wigderson, A.: Near optimal separation of tree-like
and general resolution. Combinatorica 24(4), 585–603 (Sep 2004)

12. Ben-Sasson, E., Nordström, J.: Short proofs may be spacious: An optimal separa-
tion of space and length in resolution. In: Proceedings of the 49th Annual IEEE
Symposium on Foundations of Computer Science (FOCS ’08). pp. 709–718 (Oct
2008)

13. Ben-Sasson, E., Nordström, J.: Understanding space in proof complexity: Separa-
tions and trade-offs via substitutions. In: Proceedings of the 2nd Symposium on
Innovations in Computer Science (ICS ’11). pp. 401–416 (Jan 2011)

14. Ben-Sasson, E., Wigderson, A.: Short proofs are narrow—resolution made simple.
Journal of the ACM 48(2), 149–169 (Mar 2001), preliminary version in STOC ’99

15. Berkholz, C., Nordström, J.: Near-optimal lower bounds on quantifier depth and
Weisfeiler-Leman refinement steps. In: Proceedings of the 31st Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS ’16). pp. 267–276 (Jul 2016)

16. Berkholz, C., Nordström, J.: Supercritical space-width trade-offs for resolution.
SIAM Journal on Computing 49(1), 98–118 (Feb 2020), preliminary version in
ICALP ’16

17. Blake, A.: Canonical Expressions in Boolean Algebra. Ph.D. thesis, University of
Chicago (1937)

18. Bonet, M.L., Buss, S., Johannsen, J.: Improved separations of regular resolution
from clause learning proof systems. Journal of Artificial Intelligence Research 49,
669–703 (Apr 2014)

19. Bonet, M.L., Esteban, J.L., Galesi, N., Johannsen, J.: On the relative complexity
of resolution refinements and cutting planes proof systems. SIAM Journal on
Computing 30(5), 1462–1484 (2000), preliminary version in FOCS ’98

20. Buss, S.R., Hoffmann, J., Johannsen, J.: Resolution trees with lemmas: Resolution
refinements that characterize DLL-algorithms with clause learning. Logical Methods
in Computer Science 4(4:13) (Dec 2008)

21. Buss, S.R., Ko lodziejczyk, L.: Small stone in pool. Logical Methods in Computer
Science 10(2), 16:1–16:22 (Jun 2014)

22. Chan, S.M.: Just a pebble game. In: Proceedings of the 28th Annual IEEE Confer-
ence on Computational Complexity (CCC ’13). pp. 133–143 (Jun 2013)

23. Chan, S.M., Lauria, M., Nordström, J., Vinyals, M.: Hardness of approximation
in PSPACE and separation results for pebble games (Extended abstract). In:
Proceedings of the 56th Annual IEEE Symposium on Foundations of Computer
Science (FOCS ’15). pp. 466–485 (Oct 2015)

24. Chattopadhyay, A., Koucky, M., Loff, B., Mukhopadhyay, S.: Simulation beats
richness: New data-structure lower bounds. In: Proceedings of the 50th Annual
ACM Symposium on Theory of Computing (STOC ’18). pp. 1013–1020 (Jun 2018)

25. Cook, S.A.: An observation on time-storage trade off. Journal of Computer and
System Sciences 9(3), 308–316 (1974), preliminary version in STOC ’73

26. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving.
Communications of the ACM 5(7), 394–397 (Jul 1962)

27. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal
of the ACM 7(3), 201–215 (1960)

28. Elffers, J., Giráldez-Cru, J., Gocht, S., Nordström, J., Simon, L.: Seeking practical
CDCL insights from theoretical SAT benchmarks. In: Proceedings of the 27th
International Joint Conference on Artificial Intelligence (IJCAI ’18). pp. 1300–1308
(Jul 2018)

29. Garg, A., Göös, M., Kamath, P., Sokolov, D.: Monotone circuit lower bounds from
resolution. In: Proceedings of the 50th Annual ACM Symposium on Theory of
Computing (STOC ’18). pp. 902–911 (Jun 2018)

30. Gilbert, J.R., Tarjan, R.E.: Variations of a pebble game on graphs. Technical
Report STAN-CS-78-661, Stanford University (1978), available at http://infolab.
stanford.edu/TR/CS-TR-78-661.html

31. Goerdt, A.: Regular resolution versus unrestricted resolution. SIAM Journal on
Computing 22(4), 661–683 (Aug 1993)

32. Göös, M., Jain, R., Watson, T.: Extension complexity of independent set polytopes.
SIAM Journal on Computing 47(1), 241–269 (Feb 2018)

33. Göös, M., Jayram, T.S., Pitassi, T., Watson, T.: Randomized communication vs. par-
tition number. In: Proceedings of the 44th International Colloquium on Automata,
Languages and Programming (ICALP ’17). Leibniz International Proceedings in
Informatics (LIPIcs), vol. 80, pp. 52:1–52:15 (Jul 2017)

34. Göös, M., Kamath, P., Pitassi, T., Watson, T.: Query-to-communication lifting for
PˆNP. In: Proceedings of the 32nd Annual Computational Complexity Conference
(CCC ’17). Leibniz International Proceedings in Informatics (LIPIcs), vol. 79, pp.
12:1–12:16 (Jul 2017)

http://infolab.stanford.edu/TR/CS-TR-78-661.html
http://infolab.stanford.edu/TR/CS-TR-78-661.html

35. Göös, M., Lovett, S., Meka, R., Watson, T., Zuckerman, D.: Rectangles are nonneg-
ative juntas. In: Proceedings of the 47th Annual ACM Symposium on Theory of
Computing (STOC ’15). pp. 257–266 (Jun 2015)

36. Göös, M., Pitassi, T.: Communication lower bounds via critical block sensitivity.
SIAM Journal on Computing 47(5), 1778–1806 (Oct 2018), preliminary version in
STOC ’14

37. Göös, M., Pitassi, T., Watson, T.: Deterministic communication vs. partition
number. In: Proceedings of the 56th Annual IEEE Symposium on Foundations of
Computer Science (FOCS ’15). pp. 1077–1088 (Oct 2015)

38. Göös, M., Pitassi, T., Watson, T.: The landscape of communication complexity
classes. Computational Complexity 27(2), 245–304 (Jun 2018), preliminary version
in ICALP ’16

39. Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications.
Bulletin of the American Mathematical Society 43(4), 439–561 (Oct 2006)

40. Huang, W., Yu, X.: A DNF without regular shortest consensus path. SIAM Journal
on Computing 16(5), 836–840 (Oct 1987)

41. Huynh, T., Nordström, J.: On the virtue of succinct proofs: Amplifying communi-
cation complexity hardness to time-space trade-offs in proof complexity (Extended
abstract). In: Proceedings of the 44th Annual ACM Symposium on Theory of
Computing (STOC ’12). pp. 233–248 (May 2012)

42. Järvisalo, M., Matsliah, A., Nordström, J., Živný, S.: Relating proof complexity
measures and practical hardness of SAT. In: Proceedings of the 18th International
Conference on Principles and Practice of Constraint Programming (CP ’12). Lecture
Notes in Computer Science, vol. 7514, pp. 316–331. Springer (Oct 2012)

43. Kothari, P.K., Meka, R., Raghavendra, P.: Approximating rectangles by juntas and
weakly-exponential lower bounds for LP relaxations of CSPs. In: Proceedings of the
49th Annual ACM Symposium on Theory of Computing (STOC ’17). pp. 590–603
(Jun 2017)

44. Lauria, M., Elffers, J., Nordström, J., Vinyals, M.: CNFgen: A generator of crafted
benchmarks. In: Proceedings of the 20th International Conference on Theory and
Applications of Satisfiability Testing (SAT ’17). Lecture Notes in Computer Science,
vol. 10491, pp. 464–473. Springer (Aug 2017)

45. Lee, J.R., Raghavendra, P., Steurer, D.: Lower bounds on the size of semidefinite
programming relaxations. In: Proceedings of the 47th Annual ACM Symposium on
Theory of Computing (STOC ’15). pp. 567–576 (Jun 2015)

46. Lingeling, Plingeling and Treengeling. http://fmv.jku.at/lingeling/
47. Marques-Silva, J.P., Sakallah, K.A.: GRASP: A search algorithm for propositional

satisfiability. IEEE Transactions on Computers 48(5), 506–521 (May 1999), prelim-
inary version in ICCAD ’96

48. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering
an efficient SAT solver. In: Proceedings of the 38th Design Automation Conference
(DAC ’01). pp. 530–535 (Jun 2001)

49. Nordström, J.: Narrow proofs may be spacious: Separating space and width in
resolution. SIAM Journal on Computing 39(1), 59–121 (May 2009), preliminary
version in STOC ’06

50. Nordström, J., H̊astad, J.: Towards an optimal separation of space and length in
resolution. Theory of Computing 9, 471–557 (May 2013), preliminary version in
STOC ’08

51. Pipatsrisawat, K., Darwiche, A.: On the power of clause-learning SAT solvers as
resolution engines. Artificial Intelligence 175(2), 512–525 (Feb 2011), preliminary
version in CP ’09

http://fmv.jku.at/lingeling/

52. Pitassi, T., Robere, R.: Strongly exponential lower bounds for monotone computa-
tion. In: Proceedings of the 49th Annual ACM Symposium on Theory of Computing
(STOC ’17). pp. 1246–1255 (Jun 2017)

53. Pitassi, T., Robere, R.: Lifting Nullstellensatz to monotone span programs over any
field. In: Proceedings of the 50th Annual ACM Symposium on Theory of Computing
(STOC ’18). pp. 1207–1219 (Jun 2018)

54. Raz, R., McKenzie, P.: Separation of the monotone NC hierarchy. Combinatorica
19(3), 403–435 (Mar 1999), preliminary version in FOCS ’97

55. Razborov, A.A.: A new kind of tradeoffs in propositional proof complexity. Journal
of the ACM 63(2), 16:1–16:14 (Apr 2016)

56. Razborov, A.A.: On space and depth in resolution. Computational Complexity
27(3), 511–559 (Sep 2018)

57. de Rezende, S.F., Nordström, J., Vinyals, M.: How limited interaction hinders
real communication (and what it means for proof and circuit complexity). In:
Proceedings of the 57th Annual IEEE Symposium on Foundations of Computer
Science (FOCS ’16). pp. 295–304 (Oct 2016)

58. Robere, R., Pitassi, T., Rossman, B., Cook, S.A.: Exponential lower bounds for
monotone span programs. In: Proceedings of the 57th Annual IEEE Symposium on
Foundations of Computer Science (FOCS ’16). pp. 406–415 (Oct 2016)

59. Tseitin, G.: On the complexity of derivation in propositional calculus. In: Silenko,
A.O. (ed.) Structures in Constructive Mathematics and Mathematical Logic, Part II,
pp. 115–125. Consultants Bureau, New York-London (1968)

60. Urquhart, A.: The depth of resolution proofs. Studia Logica 99(1-3), 349–364 (2011)
61. Urquhart, A.: A near-optimal separation of regular and general resolution. SIAM

Journal on Computing 40(1), 107–121 (2011), preliminary version in SAT ’08
62. Van Gelder, A.: Pool resolution and its relation to regular resolution and DPLL

with clause learning. In: Proceedings of the 12th International Conference on Logic
for Programming, Artificial Intelligence, and Reasoning (LPAR ’05). Lecture Notes
in Computer Science, vol. 3835, pp. 580–594. Springer (2005)

	Simplified and Improved Separations Between Regular and General Resolution by Lifting

