
Exponential Separations between Restricted Resolution

and Cutting Planes Proof Systems

Maria Luisa Bonet�, Juan Luis Estebany, Nicola Galesiz

Dept. Llenguatges i Sistemes Informatics

Universitat Politecnica de Catalunya

fbonet,esteban,galesig@lsi.upc.es

Jan Johannsenx

Dept. of Mathematics

UCSD

johannsn@math.ucsd.edu

Abstract

We prove an exponential lower bound for tree-like Cut-

ting Planes refutations of a set of clauses which has polyno-

mial size resolution refutations. This implies an exponential

separation between tree-like and dag-like proofs for both

CuttingPlanes and resolution; in both cases only superpoly-

nomial separations were known before [30, 20, 10]. In or-

der to prove this, we extend the lower bounds on the depth

of monotone circuits of Raz and McKenzie [26] to monotone

real circuits.

In the case of resolution, we further improve this result

by giving an exponential separation of tree-like resolution

from (dag-like) regular resolution proofs. In fact, the refu-

tationprovided to give the upper bound respects the stronger

restriction of being a Davis-Putnam resolution proof. This

extends the corresponding superpolynomial separation of

[30].

Finally, we prove an exponential separation between

Davis-Putnam resolution and unrestricted resolution

proofs; only a superpolynomial separation was previously

known [14].

1. Introduction

The motivation to work on the proof length of proposi-

tional proof systems comes from two sides. First, by the

work of Cook and Reckhow [12], we know that the claim

that for every propositional proof system there is a class

of tautologies that requires superpolynomial proof size is

equivalent to NP 6= co-NP . This connection explains

the interest in developing combinatorial techniques to prove

�Partially supported by projects SPRIT 20244 ALCOM-IT and TIC 97-

1475-CE
yPartially supported by project KOALA:DGICYT:PB95-0787
zSupported by an European Community grant under the TMR project
xSupported by DFG grant No. Jo 291/1-1

lower bounds for different proof systems. The second mo-

tivation comes from the interest in studying efficiency is-

sues in Automated Theorem Proving. The question is which

proof systems have efficient algorithms to find proofs. The

most widely used proof system in implementations is resolu-

tion or restrictions of resolution. What we will show in this

paper is that proving propositional proof complexity lower

bounds has something to say about the non-efficiency of var-

ious strategies for finding proofs.

Haken [17] was the first who proved exponential lower

bounds for unrestricted resolution. Later Urquhart [29]

found another class of tautologies that require exponen-

tial size resolution proofs, and Chvátal and Szemerédi [8]

showed that in some sense, almost all classes of tautologies

require exponential size resolution proofs (see [3, 4] for sim-

plified versions of these results). These exponential lower

bounds are bad news for automated theorem provers, since

they mean that often the time used in finding proofs will be

exponentially long in the size of the tautology, given that

the shortest proofs are. The next question is what about the

classes of tautologies that have polynomial size proofs? Can

we find these proofs efficiently? [3, 9, 4] give weakly expo-

nential time (2o(n)) algorithms for finding resolution proofs.

But, can we do better? [19, 1] give weak evidence that the

answer is negative.

Formally, we say that a propositional proof system S is

automatizable, if there is an algorithm that for every tau-

tology F finds a proof of F in S in time polynomial in the

length of the shortest proof of F in S. The only proposi-

tional proof systems that we know are automatizable are al-

gebraic proof systems like Hilbert’s Nullstellensatz [2] and

Polynomial Calculus [9]. On the other hand bounded-depth

Frege proof systems are not automatizable, assuming fac-

toring is hard [24, 7, 5]. Since Frege systems and Extended

Frege systems polynomiallysimulates bounded-depth Frege

systems, they are also not automatizable under the same as-

sumptions.

A commonly used strategy for finding proofs is to reduce

the search space by defining restricted versions of resolution

1

that are still complete. One possibility is to restrict to proofs

that are tree-like, which would be a good strategy, given that

[3, 9, 4] have quasipolynomial algorithms for finding tree-

like proofs. Here we prove an exponential separation be-

tween tree-like resolution and resolution, showing that find-

ing tree-like resolution proofs cannot be an efficient strategy

for finding resolution proofs. Until now only superpolyno-

mial separations were known [30, 10].

Many strategies for finding resolution proofs are de-

scribed in [28], but very little theoretical work has been

done until now. Goerdt [15, 14, 16] gave several superpoly-

nomial separations between resolution and some restricted

versions of it. In particular, he gave a separation between

Davis-Putnam resolution and unrestricted resolution. We

improve this result by giving an exponential separation be-

tween Davis-Putnam and unrestricted resolution, showing

that using the Davis-Putnam restriction is not, in general, a

good strategy for finding resolution proofs.

The Cutting Planes proof system (CP) is a refutation

system based on manipulating integer linear inequalities for

which the task of findinghard-to-provetautologies is solved.

[18] were the first to show such a result in the restricted case

ofCP proofs whose underlying graph is a tree. Pudlák [25]

and Cook and Haken [11] give general circuit complexity

results from which a exponential lower bounds for CP fol-

low. Nothing is known about automatization of CP proofs.

Since there is an exponential separation between CP and

Resolution (CP is more efficient) it would be nice to find

an efficient algorithm for finding CP proofs. A question to

ask is if trying to find tree-like CP proofs would be an effi-

cient strategy for finding Cutting Planes proofs.

One of the authors [20] gave a superpolynomial separa-

tion between tree-likeCP and dag-likeCP (this was previ-

ously known for a restricted form ofCP from [6]). Here we

improve that separation to exponential. This means again

that trying to find tree-like proofs is not a good strategy.

This exponential separation is a consequence of extend-

ing the lower bounds of [26] to the case of real monotone

circuits. As in [26] we prove an
(n

�

) lower bound on the

depth of monotone real circuits computing a certain mono-

tone function GEN
n

inP . This also implies an
(2

n

�

) lower

bound on the size of monotone real formulas computing

GEN
n

. This latter result allows us to obtain an exponential

lower bound for the size of tree-like CP proofs for a for-

mula associated to GEN
n

, using the interpolation technique

of [23, 25].

The paper is organized as follows: in Section 2 we give

basic definitions of the proof systems we consider. Section

3 has the definitions of monotone real circuits, and the proof

of the depth separation for them, extending the results of

Raz and McKenzie. Section 4 gives the exponential sepa-

rations between tree-like CP and CP , tree-like Resolution

and Resolution and tree-like CP and bounded-depth Frege

systems, and also the exponential separation between tree-

like resolution and regular resolution. Finally section 5 has

the exponential separation between Davis-Putnam resolu-

tion and unrestricted Resolution.

2. The Proof Systems

Resolution is a refutation proof system for formulas in

CNF based on the following inference rule:

C _x D _ �x

C _D

:

A Resolution refutation for an inital set � of clauses is a

derivation of the empty clause from� using the above infer-

ence rule. Several restrictions of the resolution proof system

are known. Here we consider the following two: (1) the reg-

ular resolution system in which the proofs are restricted in

such a way that any variable can be eliminated at most once

in any path from an initial clause to the empty clause; (2) the

Davis Putnam resolution system in which the proofs are re-

stricted in such a way that there exists a sequence of the vari-

ables such that if a variable x is eliminated before a variable

y on any path from an initial clause to the empty clause, then

x is before y in the sequence.

CuttingPlanes (CP) is a proof system operating with lin-

ear inequalities of the form
P

i2I

a

i

x

i

� k, where the coef-

ficients a
i

and k are integers. The rules of CP are addition

of two inequalities, multiplication of an inequality by a pos-

itive integer and the following division rule:
P

i2I

a

i

x

i

� k

P

i2I

a

i

b

x

i

�

�

k

b

�
;

where b is a positive integer that evenly divides all a
i

, i 2 I.

A CP refutation of a set E of inequalities is a derivation

of 0 � 1 from the inequalities in E and the axioms x � 0

and�x � �1 for every variable x, using the rules ofCP . It

can be shown that a set of inequalities has a CP -refutation

iff it has no f0; 1g-solution.

Cutting Planes can be used as a refutation system for

propositional formulas in conjunctive normal form: note

that a clause
W

i2P

x

i

_

W

j2N

�x

j

is satisfiable iff the in-

equality
P

i2P

x

i

�

P

j2N

x

j

� 1 � jN j has a f0; 1g-

solution. It is also well-known that CP can simulate Res-

olution [13].

A proof system is tree-like if the proofs are restricted so

that every line in a proof is used at most once as a premise

of an inference. Otherwise we will call it dag-like.

3. Monotone Real Circuits

A monotone real circuit is a circuit of fan-in 2 computing

with real numbers where every gate computes a nondecreas-

ing real function. This class of circuits was introduced by

Pudlák [25]. We require that monotone real circuits output

0 or 1 on every input of zeroes and ones only, so that they

are a generalization of monotone boolean circuits. Rosen-

bloom [27] shows that they are strictly more powerful than

monotone boolean circuits.

The depth and size of a monotone real circuit are defined

as usual, and we call it a formula if every gate has fan-out at

most 1.

For a monotone boolean function f , we denote by d
R

(f)

the minimal depth of a monotone real circuit computing f ,

and by s

R

(f) the minimal size of a monotone real formula

computing f .

The method of proving lower bounds on the depth of

monotone boolean circuits using communication complex-

ity was used by Karchmer and Wigderson [21] to give

an
(log

2

n) lower bound on the monotone depth of st-

connectivity. Using the notion of real communication com-

plexity introduced by Krajı́ček [22], one of the authors [20]

showed the same lower bound for monotone real circuits.

The monotone function GEN
n

of n3 inputs t
a;b;c

, 1 �

a; b; c � n is defined as follows: For c � n, we define the

relation ` c (c is generated) recursively by

` c iff c = 1 or there are a; b � n

with ` a ; ` b and t
a;b;c

= 1 :

Finally GEN
n

(

~

t) = 1 iff ` n. From now on we will write

a; b ` c for t
a;b;c

= 1.

Recently, Raz and McKenzie [26] gave a lower bound of

(n

�

) for some � > 0 on the depth of monotone boolean cir-

cuits computing GEN
n

. We show that their method applies

to monotone real circuits:

Theorem 1 For some � > 0 and sufficiently large n

d

R

(GEN
n

) �
(n

�

) and s

R

(GEN
n

) � 2

(n

�

)

:

3.1. Real Communication Complexity

LetR � X�Y �Z be a multifunction, i.e. for every pair

(x; y) 2 X �Y , there is a z 2 Z with (x; y; z) 2 R. A real

communication protocol for R is executed by two players I

and II, where I computes a function f
I

: X�f0; 1g

�

! R

and II computes a function f
II

: Y � f0; 1g

�

! R. Given

inputs x 2 X, y 2 Y , the players generate a sequence w of

bits as follows:

w

0

:= �

w

k+1

:=

�

w

k

0 if f
I

(x;w

k

) > f

II

(y; w

k

)

w

k

1 else

If there is a function g : f0; 1g

k

! Z such that

8x2X 8y2Y (x; y; g(w

k

)) 2 R ;

then we say that the protocol solves R in k rounds. The real

communication complexityCC
R

(R) is the minimal number

k such that there is a real communication protocol solving

R in k rounds.

For a natural number n, let [n] denote the set f1; : : : ; ng.

Let f : f0; 1g

n

! f0; 1g be a monotone boolean function,

let X := f

�1

(1) and Y := f

�1

(0), and let the multifunc-

tion R
f

� X � Y � [n] be defined by

(x; y; i) 2 R

f

iff x

i

= 1 and y
i

= 0

The Karchmer-Wigderson game for f is defined as follows:

Player I receives an input x 2 X and Player II an in-

put y 2 Y . They have to agree on a position i 2 [n]

such that (x; y; i) 2 R

f

. Sometimes we will say that R
f

is the Karchmer-Wigderson game for the function f . There

is a relation between the real communication complexity of

R

f

and the depth of a monotone real circuit or the size of a

monotone real formula computing f , similar to the boolean

case:

Lemma 2 (Krajı́ček [22]) Let f be a monotone boolean

function. Then

CC

R

(R

f

) � d

R

(f) and CC
R

(R

f

) � log

3=2

s

R

(f) :

For a proof see [22] or [20]. Hence to establish Theorem 1,

it suffices to prove:

Theorem 3 For some � > 0 and sufficiently large n

CC

R

(RGEN
n

) �
(n

�

):

3.2. DART games and structured protocols

Raz and McKenzie [26] introduced a special kindof com-

munication games, called DART games, and a special class

of communication protocols, the structured protocols, for

solving them.

For m; k 2 N, the set of communication games

DART(m; k) is defined as follows:

� X = [m]

k. That is the inputs for the Player I are k-

tuples of elements x
i

2 [m].

� Y = (f0; 1g

m

)

k. That is the inputs for the Player II are

k-tuples of binary colorings y
i

for [m].

� For all i = 1; : : : ; k let e
i

= y

i

(x

i

) (i.e. e

i

is

the x
i

-th bit in y

i

). The relation R(x; y; z) � X �

Y � Z defining the game, only depends on e
1

; : : : ; e

k

and z. This means that we can describe R(x; y; z) by

R((e

1

; : : : ; e

k

); z)

� R((e

1

; : : : ; e

k

); z) must be a DNF-Search-Problem.

This means that always exists a tautology F
R

defined

over the variables e
1

; : : : ; e

k

such that Z is the set of

terms definingF
R

and R((e

1

; : : : ; e

k

); z) is true if and

only if z 2 Z is the satisfied term of F
R

.

A structured protocol for a DART game is a communi-

cation protocol for solving the relation R, where player I

gets input x 2 X, player II gets input y 2 Y , and in

each round, player I reveals the value x

i

for some i, and

II replies with y
i

(x

i

). The structured communication com-

plexity of R 2 DART(m; k), denoted by SC(R), is the

minimal number of rounds in a structured protocol solving

R.

The main theorem of [26] showed that for suitablem and

k, the deterministic communication comlexity of a DART

game cannot be much smaller than that of a structured pro-

tocol. We shall show the same for its real communication

complexity. Obviously, a structured protocol solving R in

r rounds can be simulated by a real communication proto-

col solving R in r � (dlogme + 1) rounds. Conversely, the

following holds:

Theorem 4 For every relation R 2 DART(m; k), where

m � k

14,

CC

R

(R) � SC(R) �
(logm)

To prove this, first we need some combinatorial notions

and results from [26]. Let A � [m]

k and 1 � j � k. For

x 2 [m]

k�1, let deg
j

(x;A) be the number of � 2 [m] such

that (x
1

; : : : ; x

j�1

; �; x

j

; : : : ; x

k�1

) 2 A. Then we define

A[j] :=

�

x 2 [m]

k�1

; deg

j

(x;A) > 0

	

AVDEG

j

(A) :=

jAj

jA[j]j

MINDEG

j

(A) := min

x2A[j]

deg

j

(x;A)

Thickness(A) := min

1�j�k

MINDEG

j

(A) :

The following lemmas about these notions were proved in

[26]:

Lemma 5 For every A0

� A and 1 � j � k,

AVDEG

j

(A

0

) �

jA

0

j

jAj

AV DEG

j

(A) (1)

Thickness(A[j]) � Thickness(A) (2)

Lemma 6 If for every 1 � j � k, AV DEG
j

(A) � �m

for some 0 < � < 1, then for every � > 0 there is A0

� A

with jA0

j � (1� �)jAj and

Thickness(A

0

) �

(1� �)�m

k(1 + �

�1

ln(�

�1

))

:

In particular, setting � =

1

2

and � = 4m

�

1

14 , we get

Corollary 7 If m � k

14 and for every 1 � j � k,

AVDEG

j

(A) � 4m

13

14 , then there is A0

� A with jA0

j �

1

2

jAj and Thickness(A) � m

11

14 .

For a relationR 2 DART(m; k), A � X andB � Y , let

CC

R

(R;A;B) be the real communication complexity of R

restricted to A �B.

Fix a large m 2 N. A triple (R;A;B) is called an

(�; �; `)-game if R 2 DART(m; k) for some k � m

1

14

with SC(R) � `, A � X with jAj � 2

��

jXj and

Thickness(A) � m

11

14 , and B � Y with jBj � 2

��

jY j.

Lemma 8 For every �; �; ` � 0 with � � m

1

7 and every

(�; �; `)-game (R;A;B),

1. if for every 1 � j � k, AVDEG
j

(A) � 8m

13

14 , then

there is an (�+ 2; � + 1; `)-game (R0

; A

0

; B

0

) with

CC

R

(R

0

; A

0

; B

0

) � CC

R

(R;A;B)� 1 :

2. if ` � 1 and for some 1 � j � k, AV DEG
j

(A) <

8m

13

14 , then there is an (� + 3 �

logm

14

; � + 1; ` � 1)-

game (R0

; A

0

; B

0

) with

CC

R

(R

0

; A

0

; B

0

) � CC

R

(R;A;B) :

To prove Theorem 3 from the lemma, we show that for every

(�; �; `)-game (R;A;B),

CC

R

(R;A;B) � ` �

�

logm

42

�

4

3

�

�

�+ �

3

:

(�)

The case � = � = 0 gives the theorem.

For ` = 0 and � > m

1

7 , (�) is trivial, since the right

hand side gets negative for large m. We proceed induc-

tively: Let (R;A;B) be an (�; �; `)-game, and assume that

(�) holds for all (�0; �0; `0)-games with `0 � ` and �0 > �.

For sake of contradiction, suppose that CC
R

(R;A;B) <

` �

�

logm

42

�

4

3

�

�

�+�

3

. Then either for every 1 � j � k,

AVDEG

j

(A) � 8m

13

14 , and Lemma 8 gives an (�+2; �+

1; `)-game (R

0

; A

0

; B

0

) with

CC

R

(R

0

; A

0

; B

0

) � CC

R

(R;A;B)� 1 <

< ` �

�

logm

42

�

4

3

�

�

(�+ 2) + (� + 1)

3

;

or for some 1 � j � k, AVDEG
j

(A) < 8m

13

14 , then

Lemma 8 gives an (� + 3 �

logm

14

; � + 1; ` � 1)-game

(R

0

; A

0

; B

0

) with

CC

R

(R

0

; A

0

; B

0

) < ` �

�

logm

42

�

4

3

�

�

�+ �

3

= (`�1) �

�

logm

42

�

4

3

�

�

(�+ 3�

logm

14

) + (� + 1)

3

;

both contradicting the assumption.

Proof of Lemma 8: For part 1, we first show that

CC

R

(R;A;B) > 0. Assume otherwise, then there is

a term C

z

in the DNF tautology defining R that is satisfied

for every (x; y) 2 A �B. Therefore y
j

(x

j

) is constant for

some 1 � j � k. If denote the number of possible values

of x
j

in elements of A, then this implies that jBj � 2

mk� .

On the other hand, jBj � 2

mk��, hence it follows that

� � , which is a contradiction since � � m

1

7 , whereas

AVDEG

j

(A) � 8m

13

14 implies � 8m

13

14 .

Now let an optimal real communication protocol solving

R restricted to A � B be given. For a 2 A and b 2 B, let

�

a

and �
b

be the real numbers played by I and II in the first

round on inputa and b, respectively. W.l.o.g. we can assume

that these are jAj+ jBj distinct real numbers.

Now consider a f0; 1g-matrix of size jAj � jBj with

columns indexed by the �

a

and rows indexed by the �

b

,

where the entry in position (�

a

; �

b

) is the outcome of the

first round when these numbers are played. Then it is ob-

vious that either the upper right quadrant or the lower left

quadrant must form a monochromatic rectangle.

Hence there are A

�

� A and B

0

� B with jA

�

j �

1

2

jAj and jB

0

j �

1

2

jBj such that R restricted to A

�

� B

0

can be solved in one round fewer than the original proto-

col. By Lemma 5 (1), AV DEG
j

(A

�

) � 4m

13

14 for every

1 � j � k, hence by Corollary 7 there is A0

� A

� with

jA

0

j �

1

2

jA

�

j �

1

4

jAj and Thickness(A

0

) � m

11

14 . Thus

(R;A

0

; B

0

) is an (�+ 2; � + 1; `)-game.

Part 2 is proved exactly like the corresponding lemma in

[26], with the numbers slightly adjusted. �

3.3. A DART game related to GEN
n

The communication game PYRGEN(m; d) is defined as

follows:

Let Pyr
d

:= f (i; j) ; 1 � j � i � d g. We regard the

indices as elements of Pyr
d

, so that the inputs for the two

players I and II are respectively sequences of elements

x

i;j

2 [m] and y

i;j

2 f0; 1g

m with (i; j) 2 Pyr

d

, and

we picture these as laid out in a pyramidal form with (1; 1)

at the top and (d; j), 1 � j � d and the bottom. The goal

of the game is to find either an element colored 0 at the top

of the pyramid, or an element colored 1 at the bottom of the

pyramid, or an element colored 1 with the two elements be-

low it colored 0, i.e. to find indices (i; j) such that one of the

following holds:

1. i = j = 1 and y
1;1

(x

1;1

) = 0, or

2. y
i;j

(x

i;j

) = 1 and y

i+1;j

(x

i+1;j

) = 0 and

y

i+1;j+1

(x

i+1;j+1

) = 0, or

3. i = d and y
d;j

(x

d;j

) = 1.

Obviously, PYRGEN(m; d) is a game in DART(m;

�

d+1

2

�

).

The following lower bound on the structured communica-

tion complexity of PYRGEN(m; d) was proved in [26]:

Lemma 9 SC(PYRGEN(m; d)) � d.

Hence by Theorem 4, we get CC
R

(PYRGEN(m; d)) �

(d logm) for m � d

28.

The following lemma shows that the real communication

complexity of PYRGEN(m; d) is bounded by the real com-

munication complexity of the Karchmer-Wigderson game

for GEN
n

for a suitable n.

Lemma 10 For n := m �

�

d+1

2

�

+ 2,

CC

R

(PYRGEN(m; d)) � CC

R

(GEN
n

):

Proof : We interpret the elements between 2 and n � 1 as

triples (i; j; k), where (i; j) 2 Pyr

d

and k 2 [m].

Now player I computes from his input x : Pyr

d

! [m]

an input ~t
x

to GEN
n

with GEN
n

(

~

t

x

) = 1 by setting the fol-

lowing:

1; 1 ` a

d;j

for 1 � j � d

a

1;1

; a

1;1

` n

a

i+1;j

; a

i+1;j+1

` a

i;j

for (i; j) 2 Pyr

d�1

where a
i;j

:= (i; j; x

i;j

). This completely determines ~t
x

.

Likewise Player II computes from his input y : Pyr

d

!

(2

[m]

) a coloring c of the elements from [n] by setting

col(1) = 0, col(n) = 1 and col((i; j; k)) = y

i;j

(k). From

this, he computes an input ~t
y

by setting a; b ` c iff it is not

the case that col(c) = 1 and col(a) = col(b) = 0. Obvi-

ously GEN
n

(

~

t

y

) = 0.

Playing the Karchmer-Wigderson game for GEN
n

now

yields a triple (a; b; c) such that a; b ` c in ~t
x

and a; b 6` c in
~

t

y

. By definition of ~t
y

, this means that col(a) = col(b) = 0

and col(c) = 1, and by definition of ~t
x

one of the following

cases must hold:

� a = b = 1 and c = a

d;j

for some j � d. By definition

of col, y
d;j

(x

d;j

) = 1.

� c = n and a = b = a

1;1

. In this case, y
1;1

(x

1;1

) = 0.

� a = a

i+1;j

, b = a

i+1;j+1

and c = a

i;j

. Then

we have y

i;j

(x

i;j

) = 1, and y

i+1;j

(x

i+1;j

) =

y

i+1;j+1

(x

i+1;j+1

) = 0.

In either case, the players have solved PYRGEN(m; d) with-

out any additional communication. �

Now the lower bound on CC

R

(PYRGEN(m; d)) ob-

tained from Lemma 9 and Theorem 4, together with

Lemma 10 immediately imply Theorem 3 with � =

1

30

by

taking m = d

28.

Let ~t be an input to GEN
n

. We say that n is generated in

a depth-d pyramidal fashion by ~t if there is a mapping m :

Pyr

d

! [n] such that 1; 1 ` m(d; j) for every j � d, m(i+

1; j);m(i + 1; j + 1) ` m(i; j) for every (i; j) 2 Pyr

d�1

andm(1; 1);m(1; 1) ` n (recall that a; b ` cmeans t
a;b;c

=

1).

As the reduction in Lemma 10 produces only inputs from

GEN�1

n

(1) which have the additional property that n is gen-

erated in a depth-d pyramidal fashion, we can state the fol-

lowing strengthening of Theorem 1:

Corollary 11 Let n; d be as above. Every monotone real

formula that outputs 1 on every input to GEN
n

for which n

is generated in a depth-d pyramidal fashion, and outputs 0

on all inputs where GEN
n

is 0, has to be of size
(2

n

�

).

The other consequences drawn from Theorem 4 and

Lemma 9 in [26] apply to monotone real circuits as well, e.g.

we just state without proof the following result:

Theorem 12 There are constants �; c > 0 such that for ev-

ery function d(n) � n

�, there is a family of monotone func-

tions f
n

: f0; 1g

n

! f0; 1g that can be computed by mono-

tone boolean circuits of size nO(1) and depth d(n), but can-

not be computed by monotone real circuits of depth less than

c � d(n).

The method also gives a simpler proof of the lower bounds

in [20], in the same way as [26] simplifies the lower bound

of [21].

4. Separation between tree-like and dag-like

versions of Resolution and Cutting Planes

Cutting Planes refutations are linked to monotone real

circuits by the following interpolation theorem due to

Pudlák:

Theorem 13 (Pudlák [25]) Let ~p; ~q; ~r be disjoint vectors of

variables, and letA(~p; ~q) andB(~p; ~r) be sets of inequalities

in the indicated variables such that the variables ~p either

have only nonnegative coefficients in A(~p; ~q) or have only

nonpositive coefficients in B(~p; ~r).

Suppose there is a CP refutationR of A(~p; ~q)[B(~p; ~r).

Then there is a monotone real circuit C(~p) of size O(jRj)

such that for any vector ~a 2 f0; 1g

j~pj

C(~a) = 0 ! A(~a; ~q) is unsatisfiable

C(~a) = 1 ! B(~a; ~r) is unsatisfiable

Furthermore, if R is tree-like, then C(~p) is a monotone real

formula.

We now define an unsatisfiable set of clauses related to

GEN
n

. The variables p
a;b;c

for a; b; c 2 [n] represent the

input to GEN
n

. Variables q
i;j;a

for (i; j) 2 Pyr

d

and a 2

[n] encode a pyramid where the element a is assigned to the

position (i; j) by a certain mapping m : Pyr

d

! [n] (cf.

Corollary 7). Finally the variables r
a

for a 2 [n] represent

a coloring of the elements by 0; 1 such that 1 is colored 0,

n is colored 1 and the elements colored 0 are closed under

generation.

The sets of clauses Gen(~p; ~q) and Col(~p; ~r) are defined

in Table 1. Obviously, if Gen(~t; ~q) is satisfiable for a fixed

vector~t 2 f0; 1g

n

3

, thenn is generated in a depth-dpyrami-

dal fashion, and if Col(~t; ~r) is satisfiable, then GEN(~t) = 0.

Since the variables ~p occur only positively inGen(~p; ~q) and

only negatively in Col(~p; ~r), Theorem 13 is applicable, and

the formula obtained from this application satisfies the con-

ditions of Corollary 11. Hence we can conclude:

Theorem 14 For some � > 0, tree-like CP refutations of

the clauses Gen(~p; ~q)[Col(~p; ~r) have to be of size 2
(n

�

).

On the other hand, there are polynomial size dag-like res-

olution refutations of these clauses.

Theorem 15 There are (dag-like) resolution refutations of

size nO(1) of the clauses Gen(~p; ~q) [Col(~p; ~r).

As the proof is very similar to that of Theorem 18 below,

we omit it. The following corollary follows by the last two

Theorems and well-known simulation results:

Corollary 16 The clauses Gen(~p; ~q) [Col(~p; ~r) exponen-

tially separate the following proof systems: Tree-like from

dag-like Resolution, tree-like Cutting Planes from dag-like

Cutting Planes and tree-like Cutting Planes from bounded-

depth Frege systems.

4.1. Separation of tree-like CP from regular

resolution

We now modify the clauses Col(~p; ~r), so that the mod-

ified clauses allow small regular resolutions, but in such a

way that the lower bound proof still applies. We replace

the variables r
a

by r

a;i;D

for a 2 [n], 1 � i � d and

D 2 fL;Rg, giving the coloring of element a, with auxil-

iary indices i being a row in the pyramid and D distinguish-

ing whether an element is used as a left or right predecessor

in the generation process.

The set RCol(~p; ~r) is defined in Table 2. Due to the

clauses (13) and (14), the variables r
a;i;D

are equivalent for

all values of the auxiliary indices i;D. Hence a satisfying

assignment for RCol(~p; ~r) still codes a coloring of [n] such

that elements that can be generated from 1 are colored 0, the

elements from which n can be generated are colored 1, and

the 0-colored elements are closed under generation. Hence

if RCol(~t; ~r) is satisfiable, then GEN(~t) = 0.

Hence any interpolant for the clauses Gen(~p; ~q) [

RCol(~p; ~r) satisfies the assumptions of Corollary 11, and

we can conclude

Theorem 17 Tree-like CP refutations of the clauses

Gen(~p; ~q) [RCol(~p; ~r) have to be of size 2

(n

�

).

_

1�a�n

q

i;j;a

for (i; j) 2 Pyr

d

(3)

�q

d;j;a

_ p

1;1;a

for 1 � j � d and a 2 [n] (4)

�q

1;1;a

_ p

a;a;n

for a 2 [n] (5)

�q

i+1;j;a

_ �q

i+1;j+1;b

_ �q

i;j;c

_ p

a;b;c

for (i; j) 2 Pyr

d�1

and a; b; c 2 [n] (6)

�r

1

(7)

r

n

(8)

r

a

_ r

b

_ �p

a;b;c

_ �r

c

for a; b; c 2 [n] (9)

Table 1. The set Gen(~p; ~q) is given by (3) - (6), and Col(~p; ~r) by (7) - (9).

�p

1;1;a

_ �r

a;d;D

for a 2 [n] and D 2 fL;Rg (10)

�p

a;a;n

_ r

a;1;D

for a 2 [n] and D 2 fL;Rg (11)

r

a;i+1;L

_ r

b;i+1;R

_ �p

a;b;c

_ �r

c;i;D

for (i; j) 2 Pyr

d�1

; a; b; c 2 [n]

and D 2 fL;Rg

(12)

�r

a;i;D

_ r

a;i;

�

D

for 1 � i � d and D 2 fL;Rg (13)

�r

a;i;D

_ r

a;j;D

for 1 � i; j � d and D 2 fL;Rg (14)

Table 2. The set of clauses RCol(~p; ~r).

On the other hand, we have the followingupper bound on

(dag-like) regular resolution refutations of these clauses:

Theorem 18 There are (dag-like) regular resolution refuta-

tions of the clauses Gen(~p; ~q) [RCol(~p; ~r) of size nO(1).

Proof : First we resolve clauses (4) and (10) to get

�q

d;j;a

_ �r

a;d;D

(15)

for 1 � j � d, 1 � a � n and D 2 fL;Rg. Next we

resolve (5) and (11) to get

�q

1;1;a

_ r

a;1;D

(16)

for 1 � a � n and D 2 fL;Rg. Finally, from (6) and (12)

we obtain

�q

i+1;j;a

_ �q

i+1;j+1;b

_ �q

i;j;c

_ r

a;i+1;L

_ r

b;i+1;R

_ �r

c;i;D

(17)

for 1 � j � i < d, 1 � a; b; c � n and D 2 fL;Rg.

Now we want to derive �q

i;j;a

_ �r

a;i;D

for every (i; j) 2

Pyr

d

, 1 � a � n andD 2 fL;Rg, by induction on i down-

ward from d to 1. The induction base is just (15).

For the inductive step, resolve (17) against the clauses

�q

i+1;j;a

_ �r

a;i+1;L

and �q

i+1;j+1;b

_ �r

b;i+1;R

;

which we have by induction, to give

�q

i+1;j;a

_ �q

i+1;j+1;b

_ �q

i;j;c

_ �r

c;i;D

for every 1 � a; b � n.

All of these are then resolved against two instances of (3),

and we get the desired �q

i;j;c

_ �r

c;i;D

.

Finally, we have in particular �q
1;1;a

_ �r

a;1;L

, which we re-

solve against (16) to get �q
1;1;a

for every a � n. From these

and an instance of (3) we get the empty clause. �

A proof of the upper bound in Theorem 15 can be ob-

tained from this by simply omitting the auxiliary indices

from the variables r
a;i;D

. Note that the refutation given in

the proof of Thm. 18 is actually a Davis-Putnam refutation:

It respects the following elimination order

p

1;1;1

: : : p

n;n;n

r

1;d;L

r

1;d;R

: : : r

n;d;L

r

n;d;R

q

1;d;1

: : : q

1;d;n

: : : q

d;d;1

: : : q

d;d;n

r

1;d�1;L

: : : r

n;d�1;R

q

1;d�1;1

: : : q

d�1;d�1;n

...

r

1;1;L

r

1;1;R

q

1;1;1

: : : q

1;1;n

:

5. Lower bound for Davis-Putnam resolutions

Goerdt [14] gives a superpolynomial separation of Davis-

Putnam resolution from unrestricted resolution. The lower

bound he gives is of the order n
(log logn). By applying

his method to a modification of the clauses Gen(~p; ~q) [

Col(~p; ~r), we can improve the separation to exponential.

We modify the clauses Gen(~p; ~q) in such a way as to

make small Davis-Putnam resolution refutations impossi-

ble, while still allowing for small unrestricted resolutions.

The lower bound is proved by a bottleneck counting argu-

ment similar to that used in [14], which is based on the orig-

inal argument of [17].

Let d � 8 be divisible by 4 and let n = d

3, and choose a

mapping � : [d]� [

d

2

] ! Pyr

d

such that no element from

column i is mapped to rows between i�1 between i+1, i.e.

if �(i; j) = (i

0

; j

0

), then i0 =2 fi� 1; i; i+ 1g, and such that

no two elements from the same column are mapped to the

same position, i.e. if j
1

6= j

2

, then �(i; j
1

) 6= �(i; j

2

). Such

mappings are easy to construct; note that we do not require

� to be injective.

The set of clauses DPGen(~p; ~q) is built from Gen(~p; ~q)

by adding additional literals to some of the clauses (4) and

(6). The clauses (4) for 1 � j � d and a �

d

2

are replaced

by

�q

i

0

;j

0

;b

_ �q

d;j;a

_ p

1;1;a

(18)

for every b 2 [n], where (i

0

; j

0

) = �(d; a). The clauses (6)

for (i; j) 2 Pyr

d�1

, a; b 2 [n] and 1 � c �

d

2

are replaced

by

�q

i

0

;j

0

;e

_ �q

i+1;j;a

_ �q

i+1;j+1;b

_ �q

i;j;c

_ p

a;b;c

(19)

for every e 2 [n], where (i

0

; j

0

) = �(i; c). All other clauses

remain unchanged.

Proposition 19 There are (dag-like) unrestricted resolution

refutations of the clauses DPGen(~p; ~q) [Col(~p; ~r) of size

n

O(1).

Proof : First, from the clauses (18) and (3) derive the original

clauses (4), and from (19) and (3) derive (6). Then apply the

refutations from the proof of Theorem 15, which of course

work for any values of n and d. �

Definition: A critical assignment � is given by

� a coloring col

�

2 2

[n] such that col
�

(1) = 0 and

col

�

(n) = 1. The values �(r
a

) are assigned accord-

ing to col
�

(a).

� a set of triples G

�

� [n]

3 such that for no triple

(a; b; c) 2 G

�

, col
�

(a) = col

�

(b) = 0 and col
�

(c) =

1. Values �(p
a;b;c

) are assigned according to G
�

.

� A position (i

�

; j

�

) 2 Pyr

d

with �(q
i

�

;j

�

;a

) = 0 for

every a 2 [n].

� A mapping m
�

: Pyr

d

n fi

�

; j

�

g ! [n] such that

– every triangle is consistent withG
�

, i.e. for every

(i; j) 2 Pyr

d�1

such that (i
�

; j

�

) =2 f(i; j); (i+

1; j); (i+ 1; j + 1)g

(m

�

(i+ 1; j);m

�

(i + 1; j + 1);m

�

(i; j))

is in G
�

.

– if (i

�

; j

�

) 6= (1; 1), then

(m

�

(1; 1);m

�

(1; 1); n) 2 G

�

.

– (1; 1;m

�

(d; j)) 2 G

�

for every j such that

(d; j) 6= (i

�

; j

�

).

Then �(q
i;j;m

�

(i;j)

) = 1 and �(q
i;j;b

) = 0 for all b 6=

m

�

(i; j), for every (i; j) 6= (i

�

; j

�

).

A critical assignment satisfies all clauses from

Col(~p; ~r), and all clauses from DPGen(~p; ~q) except

for
W

a2[n]

q

i

�

;j

�

;a

.

Theorem 20 (Dag-like) Davis-Putnam resolution refuta-

tions of the clauses DPGen(~p; ~q)[Col(~p; ~r) have to be of

size
(2

1

4

n

1

3

).

Proof : Let an elimination order hx
1

; : : : ; x

N

i be given,

where N = n

3

+

�

d+1

2

�

n + n is the number of vari-

ables, and a Davis-Putnam refutationR of DPGen(~p; ~q) [

Col(~p; ~r) respecting this elimination order be given. For

(i; j) 2 Pyr

d

and s � N , let S(i; j; s) :=

�

a �

d

2

; q

i;j;a

2 fx

1

; : : : ; x

s

g

	

. Let (i
0

; j

0

) denote the

unique position in Pyr

d

such that there is an index s

0

�

N with jS(i

0

; j

0

; s

0

)j =

d

4

, and for all (i; j) 6= (i

0

; j

0

),

jS(i; j; s

0

)j <

d

4

. In other words, (i
0

; j

0

) is the first po-

sition in Pyr

d

for which d

4

variables q
i

0

;j

0

;a

with a �

d

2

are eliminated. Let fa
1

; : : : ; a d

4

g denote S(i
0

; j

0

; s

0

). For

each 1 � k �

d

4

, let (i
k

; j

k

) denote �(i
0

; a

k

), and define

R

k

:= [

d

2

] n S(i

k

; j

k

; s

0

), i.e. R
k

is the set of those a �

d

2

for which q

i

k

;j

k

;a

is eliminated later than any q

i

0

;j

0

;a

`

for

1 � ` �

d

4

. Note that jR
k

j �

d

4

by definition of (i
0

; j

0

)

and by the first requirement for �.

A critical assignment � is 0-critical if (i
�

; j

�

) = (i

0

; j

0

)

and m

�

(i

k

; j

k

) 2 R

k

, and furthermore the following con-

ditions hold

� (m

�

(i

0

+1; j

0

);m

�

(i

0

+1; j

0

+1); a

k

) =2 G

�

if i
0

6= d

or (1; 1; a
k

) =2 G

�

if i
0

= d

� if i
0

; j

0

> 1, then (m

�

(i

0

; j

0

�1); a

k

;m

�

(i

0

�1; j

0

�

1)) 2 G

�

� if i
0

> 1 and j

0

< i

0

, then (a

k

;m

�

(i

0

; j

0

+

1);m

�

(i

0

� 1; j

0

)) 2 G

�

for every 1 � k �

d

4

.

The next lemma shows that there are many 0-critical as-

signments.

Lemma 21 For every choice of pairwise distinct values

b

1

; : : : ; b d

4

with b

k

2 R

k

, there is a 0-critical assignment

� with m
�

(i

k

; j

k

) = b

k

for 1 � k �

d

4

.

Proof : The assignment � is constructed as follows:

1. If i
0

< d, then valuesm
�

(i

0

+1; j

0

) = c

1

andm
�

(i

0

+

1; j

0

+ 1) = c

2

are assigned with d

2

< c

1

; c

2

� d.

2. For each (i; j) 6= (i

0

; j

0

) for which no value

m

�

(i; j) has been assigned yet, i.e. (i; j) =2

f(i

1

; j

1

); : : : ; (i d

4

; j d

4

); (i

0

+ 1; j

0

); (i

0

+ 1; j

0

+ 1)g,

assign a value n� id � m

�

(i; j) < n� (i�1)d, such

that no value is assigned twice.

3. Put all triples occurring in the pyramid and

those required by the definition of 0-critical into

G

�

, and no others, i.e. G

�

contains the triple

(m

�

(1; 1);m

�

(1; 1); n), all triples (1; 1;m

�

(d; j))

for (d; j) 2 Pyr

d

n f(i

�

; j

�

)g and all triples

(m

�

(i + 1; j);m

�

(i + 1; j + 1);m

�

(i; j))

such that f(i; j); (i + 1; j); (i + 1; j + 1)g �

Pyr

d

n f(i

�

; j

�

)g, and for i

0

> 1, all triples

(m

�

(i

0

; j

0

� 1); a

k

;m

�

(i

0

� 1; j

0

� 1)) if j
0

> 1 and

(a

k

;m

�

(i

0

; j

0

+ 1);m

�

(i

0

� 1; j

0

)) if j
0

< i

0

.

4. Color all elements in rows i
�

; : : : ; d by 0, and also all

elements that are thereby forced to have color 0 by the

second clause in the definition of critical assignment,

i.e. if (a; b; c) 2 G

�

and a; b have already been colored

0, then also c is colored 0. Color all remaining elements

by 1.

To verify that � is 0-critical, observe that the only elements

�

d

2

appearing in the pyramid are the b
k

, so this is the only

way that the values a
k

can occur in the pyramid.. If i
0

< d,

then as n = d

3

> d

2

+d, the elements c
1

; c

2

do not appear in

the pyramid anywhere else but at (i
0

+1; j

0

); (i

0

+1; j

0

+1),

hence no triple (c
1

; c

2

; a

k

) gets put intoG
�

. If i
0

= d, then

i

k

6= d for every k, so no triple (1; 1; a
k

) gets put into G
�

.

The elements m
�

(i

0

; j

0

� 1) and m
�

(i

0

; j

0

+ 1), if de-

fined, cannot occur adjacent to any a
k

, and so the elements

m

�

(i

0

� 1; j

0

� 1) and m
�

(i

0

� 1; j

0

) are not forced to be

colored 0, hence they get colored 1. Therefore everything

that is above these positions in the pyramid gets colored 1

also, as indicated in Figure 1.

In particular, if m
�

(1; 1) is defined, it is colored 1, and

thus n is colored 1. Hence � is critical, and by the remarks

above, 0-critical. �

Now we map 0-critical assignments to certain clauses in

the proof. For a 0-critical assignment �, let C
�

be the first

clause in R such that
�

a �

d

2

; q

i

0

;j

0

;a

occurs in C
�

	

=

s

 J

J

J

J

J

J

J

J

J

J

J

J

J

J

0 0

0

1

Figure 1. the black dot indicates (i

0

; j

0

).

[

d

2

] n fa

1

; : : : ; a d

4

g and � does not satisfy C

�

. This

clause exists because � determines a path through R from
W

1�a�n

q

i

0

;j

0

;a

to the empty clause such that� does not sat-

isfy any clause on that path. The variables q
i

0

;j

0

;a

with a �
d

2

are eliminated along that path, and q
i

0

;j

0

;a

1

; : : : q

i

0

;j

0

;a

d=4

are the first among them in the elimination order. The fol-

lowing lemma shows that the clausesC
�

have a certain com-

plexity, which implies that the mapping � 7! C

�

does not

map too many 0-critical assignments to the same clause.

Lemma 22 Let � be a 0-critical assignment and b

k

:=

m

�

(i

k

; j

k

). Then for every 1 � k �

d

4

, the literal �q
i

k

;j

k

;b

k

occurs in C
�

.

Proof : Let �0 be the assignment defined by �0(q
i

0

;j

0

;a

k

) :=

1 and �

0

(x) := �(x) for all other variables x. As q
i

0

;j

0

;a

k

does not occur in C
�

, �0 does not satisfy C
�

either. If i
0

<

d, the only clause fromDPGen(~p; ~q)[Col(~p; ~r) that is not

satisfied by �0 is

�q

i

k

;j

k

;b

k

_ �q

i

0

+1;j

0

;c

1

_ �q

i

0

+1;j

0

+1;c

2

_ �q

i

0

;j

0

;a

k

_ p

c

1

;c

2

;a

k

where c
1

:= m

�

(i

0

+ 1; j

0

) and c
2

:= m

�

(i

0

+ 1; j

0

+ 1).

If i
0

= d, then the only clause not satisfied by �0 is

�q

i

k

;j

k

;b

k

_ �q

i

0

;j

0

;a

k

_ p

1;1;a

k

:

The first item in the definition of 0-critical guarantees that

these clauses are not satisfied, and the other two make sure

that the other possible candidates, i.e. instances of (6) or (19)

with (i

0

; j

0

) at the bottom of the triangle, are satisfied.

In both cases there is a path through R leading from the

clause in question to C
�

. The variable that is eliminated in

the last inference on that path must be one of the q
i

0

;j

0

;a

`

for

1 � ` �

d

4

. Since b
k

2 R

k

, the variable q
i

k

;j

k

;b

k

is later in

the elimination order, so it cannot be eliminated on that path.

Hence the literal �q
i

k

;j

k

;b

k

still occurs in C
�

. �

Now let �; � be two 0-critical assignments such that

b

k

:= m

�

(i

k

; j

k

) 6= m

�

(i

k

; j

k

) for some 1 � k �

d

4

,

so that �(q
i

k

;j

k

;b

k

) = 0. By Lemma 22, the literal �q
i

k

;j

k

;b

k

occurs in C
�

, therefore � satisfies C
�

and hence C
�

6= C

�

.

By Lemma 21, there are at least d

4

! distinct 0-critical as-

signments that differ in the values m
�

(i

k

; j

k

). Thus R con-

tains at least d

4

! � (

d

4e

)

d

4

=
(2

1

4

n

1

3

) different clauses of

the form C

�

, which proves the theorem. �

Acknoweldgements

We would like to thank R. Raz for reading a previous ver-

sion of this work and discovering an error, A. Goerdt for

sending us copies of his papers, S. Buss for helpful discus-

sions and finally P. Clote for suggestions about resolution

separations.

References

[1] M. Alekhnovich, S. R. Buss, S. Moran, and T. Pitassi. Min-

imum propositional proof length is NP-hard to linearly ap-

proximate. In MFCS ’98. Springer LNCS, 1998.

[2] P. Beame, R. Impagliazzo, J. Krajı́ček, T. Pitassi, and

P. Pudlák. Lower bounds on Hilbert’s Nullstellensatz and

propositional proofs. Proceedings of the London Mathemat-

ical Society, 73:1–26, 1996.

[3] P. Beame and T. Pitassi. Simplified and improved resolution

lower bounds. In Proc. 28th STOC, 1996.

[4] E. Ben-Sasson and A. Wigderson. Resolution refutation size

vs. width. Manuscript, 1998.

[5] M. L. Bonet, C. Domingo, R. Gavalda, A. Maciel, and

T. Pitassi. Non-automatizability of bounded-depth Frege

proofs. Manuscript, 1998.

[6] M. L. Bonet, T. Pitassi, and R. Raz. Lower bounds for cutting

planes proofs with small coefficients. Journal of Symbolic

Logic, 62:708–728, 1997. Preliminary version in Proc. 27th

STOC, 1995.

[7] M. L. Bonet, T. Pitassi, and R. Raz. No feasible interpolation

for TC0-Frege proofs. In Proc. 38th FOCS, pages 254–263,

1997.

[8] V. Chvátal and E. Szemerédi. Many hard examples for reso-

lution. Journal of the ACM, 35:759–768, 1988.

[9] M. Clegg, J. Edmonds, and R. Impagliazzo. Using the

Groebner basis algorithm to find proofs of unsatisfiability. In

Proc. 28th STOC, pages 174–183, 1996.

[10] P. Clote and A. Setzer. On PHP , st-connectivity and odd

charged graphs. In P. Beame and S. R. Buss, editors, Proof

Complexity and Feasible Arithmetics, pages 93–117. AMS

DIMACS Series Vol. 39, 1998.

[11] S. Cook and A. Haken. An exponential lower bound for the

size of monotone real circuits. To appear in J. Comp. System

Sciences, 1998.

[12] S. A. Cook and R. A. Reckhow. The relative efficiency of

propositional proof systems. Journal of Symbolic Logic,

44:36–50, 1979.

[13] W. Cook, C. Coullard, and G. Turán. On the complexity of

cutting plane proofs. Discrete Applied Mathematics, 18:25–

38, 1987.

[14] A. Goerdt. Davis-Putnam resolution versus unrestricted res-

olution. Annals of Mathematics and Artificial Intelligence,

6:169–184, 1992.

[15] A. Goerdt. Unrestricted resolution versus N-resolution. The-

oretical Computer Science, 93:159–167, 1992.

[16] A. Goerdt. Regular resolution versus unrestricted resolution.

SIAM Journal of Computing, 22:661–683, 1993.

[17] A. Haken. The intractability of resolution. TheoreticalCom-

puter Science, 39:297–308, 1985.

[18] R. Impagliazzo, T. Pitassi, and A. Urquhart. Upper and lower

bounds for tree-like cutting planes proofs. In Proc. 9th LICS,

pages 220–228, 1994.

[19] K. Iwama. Complexity of finding short resolution proofs. In

MFCS ’97, pages 309–318. Springer LNCS 1295, 1997.

[20] J. Johannsen. Lower bounds for monotone real circuit depth

and formula size and tree-like cutting planes. Information

Processing Letters, 67:37–41, 1998.

[21] M. Karchmer and A. Wigderson. Monotone circuits for con-

nectivity require super-logarithmic depth. SIAM Journal on

Discrete Mathematics, 3:255–265, 1990. Preliminary ver-

sion in Proc. 20th STOC, 1988.

[22] J. Krajı́ček. Interpolation by a game. To appear in Math.

Logic Quarterly, 1997.

[23] J. Krajı́ček. Interpolation theorems, lower bounds for proof

systems and independence results for bounded arithmetic.

Journal of Symbolic Logic, 62:457–486, 1997.

[24] J. Krajı́ček and P. Pudlák. Some consequences of cryp-

tographical conjectures for S1

2

and EF . Information and

Computation, 140:82–94, 1998. Preliminary version in D.

Leivant, ed., LCC ’94, Springer LNCS 960, 1995.

[25] P. Pudlák. Lower bounds for resolution and cutting plane

proofs and monotone computations. Journal of Symbolic

Logic, 62:981–998, 1997.

[26] R. Raz and P. McKenzie. Separation of the monotone NC

hierarchy. In Proc. 38th FOCS, pages 234–243, 1997.

[27] A. Rosenbloom. Monotone real circuits are more powerful

than monotoneboolean circuits. Information ProcessingLet-

ters, 61:161–164, 1997.

[28] U. Schöning. Logic for Computer Scientists. Birkhäuser,

1989.

[29] A. Urquhart. Hard examples for resolution. Journal of the

ACM, 34:209–219, 1987.

[30] A. Urquhart. The complexity of propositional proofs. Bul-

letin of Symbolic Logic, 1:425–467, 1995.

