
DIMACS Series in Discrete Mathematics

and Theoretical Computer Science

Volume 00, 19xx

Equational Calculi and Constant Depth Propositional Proofs

Jan Johannsen

Abstract. We de�ne equational calculi for proving equations between func-

tions in the complexity classes ACC(2) and TC

0

, and we show that proofs

in these calculi can be simulated by polynomial size, constant depth proofs in

Frege systems with counting modulo 2 and threshold connectives respectively.

Introduction

To motivate our work, we give a brief overview of the theory of propositional

proof systems, for a more detailed exposition see e.g. the recent survey [18]. A

propositional proof system is a polynomial time computable function whose range

is the set of propositional tautologies. The usual proof systems fall under this

de�nition if we associate with them the function mapping a valid proof to the

tautology proved by it, and every other string to some �xed tautology.

A proof system is polynomially bounded if for every tautology A, there is a

proof in it of length polynomial in the length of A. The existence of a polynomially

bounded proof system is equivalent to NP = co-NP , hence the quest for lower

bounds on the length of propositional proofs can be considered an approach to this

problem from computational complexity theory.

A proof system P

1

polynomially simulates P

2

, if for each proof p in P

2

, there is

a proof in P

1

of the same tautology whose length is polynomial in the length of p.

Two proof systems are polynomially equivalent if they polynomially simulate each

other.

A Frege system is a usual proof system for tautologies in a language with �nitely

many connectives, given by �nitely many axiom schemes and inference rules, which

are implicationally complete in the sense that if the formulas B

1

; : : : ; B

m

semanti-

cally entail A, then there must be a proof of A from the hypotheses B

1

; : : : ; B

m

.

All Frege systems are polynomially equivalent [14]. An extended Frege system is

a Frege system extended by the substitution rule. An important open question is

whether Frege systems are polynomially bounded, or whether they can polynomi-

ally simulate extended Frege systems.

In a constant depth Frege system, the depth of formulas appearing in proofs is

required to be bounded by a constant, where the depth of formulas is measured as

1991 Mathematics Subject Classi�cation. Primary 03F20; Secondary 03F30, 68Q15.

This paper is in �nal form and no version of it will be submitted elsewhere for publication.

c

0000 American Mathematical Society

1052-1798/00 $1.00 + $.25 per page

1

2 JAN JOHANNSEN

if the binary connectives were of unbounded arity. Constant depth Frege systems

and some extensions of these by additional, non-schematic axioms (like pigeonhole

and counting principles) are known not to be polynomially bounded [1, 4, 2, 5, 3].

A recurring theme in the theory of propositional proof systems is the corre-

spondence of certain proof systems to certain complexity classes. So e.g. extended

Frege systems correspond to P , Frege systems to NC

1

and constant depth Frege

systems to AC

0

.

The �rst of these correspondences was made precise by S. Cook in his classic

paper [13], where he de�ned an equational calculus PV for proving equations be-

tween polynomial time computable functions, based on Cobham's characterization

of this class as a function algebra [12]. He then showed that proofs in PV can be

simulated by polynomial size families of extended Frege proofs.

In the same vein, P. Clote [10] de�ned calculi ALV and AV for equations

between functions in NC

1

and AC

0

resp., and showed that proofs in these calculi

can be simulated by polynomial size Frege proofs and constant depth Frege proofs

respectively.

Recently, extensions of Frege systems by modular counting [3] and threshold

connectives [15, 7] were introduced, where constant depth proofs in these intuitively

correspond to the circuit complexity classes ACC(m) and TC

0

. We support this

intuition by de�ning equational calculi A2V for functions in ACC(2) and TV for

functions in TC

0

and showing that proofs in these calculi can be simulated by

polynomial size, constant depth proofs in the corresponding proof systems.

Two propositional proof systems

Let PK denote the propositional part of the classical sequent calculus LK, with

the connectives ^ ; _ and :. It is well-known that PK is polynomially equivalent to

any Frege system [14]. Moreover the mutual simulations do not increase the depth

of formulas occurring in a proof by more than a constant, provided that the Frege

system has the same underlying set of connectives.

We extend PK by the binary connective � (exclusive disjunction) and the

following inference rules for its introduction:

�-left1 :

� =) A;� � =) B;�

A�B;� =) �

� -left2 :

A;� =) � B;� =) �

A�B;� =) �

�-right1 :

� =) A;� B;� =) �

� =) A�B;�

� -right2 :

A;� =) � � =) B;�

� =) A�B;�

We call this extension PK�. De�ne the formulas

L

n

(A

1

; : : : ; A

n

) for n � 2

inductively by

L

2

(A;B) := A�B and

L

n+1

(A

1

; : : : ; A

n+1

) := A

1

�

L

n

(A

2

; : : : ; A

n+1

) :

Let B(p

1

; : : : ; p

n

) be a formula built up from the variables p

1

; : : : ; p

n

using only

one kind of binary connective, and let A

1

; : : : ; A

n

be formulas with an outermost

connective of a di�erent kind. If d is the maximum of the depths of the formulas A

i

,

then B(A

1

; : : : ; A

n

) is a formula of depth d+ 1. With this notion of depth, PK�

is polynomially equivalent to a Frege system with Mod

2

connectives F (Mod

2

) as

introduced e.g. in [3] and to the Frege system with biconditional considered in [17].

In both cases, the mutual simulations do not increase the formula-depth in a proof

by more than a constant.

EQUATIONAL CALCULI AND CONSTANT DEPTH PROPOSITIONAL PROOFS 3

Propositional threshold logic, as introduced in [7], has the unary connective

: and for each n � 1 and 1 � k � n the n-ary threshold connective T

n

k

, where

T

n

k

(A

1

; : : : ; A

n

) is intended to be true if at least k of the A

i

are true. The depth

of a threshold logic formula is simply its syntactic depth, and its size is the sum

of the sizes of the variables and connectives in it, where the variables and : are of

size 1 and T

n

k

is of size n+ k+1. Note that n-ary conjunction and disjunction are

the special cases T

n

n

and T

n

1

of threshold connectives.

The sequent calculus PTK for propositional threshold logic has the initial

sequents A =) A, the usual structural rules, cut rule and rules for negation plus

the following versions of the rules for conjunction

^-left :

A

1

; : : : ; A

n

;� =) �

T

n

n

(A

1

; : : : ; A

n

);� =) �

^-right :

� =) A

1

;� � � � � =) A

n

;�

� =) T

n

n

(A

1

; : : : ; A

n

);�

and the dual rules for disjunction. Additionally, for n � 3 there are the following

rules for T

n

k

with 1 < k < n:

T

n

k

-left :

T

n�1

k

(A

2

; : : : A

n

);� =) � A

1

; T

n�1

k�1

(A

2

; : : : ; A

n

);� =) �

T

n

k

(A

1

; : : : ; A

n

);� =) �

T

n

k

-right :

� =) A

1

; T

n�1

k

(A

2

; : : : A

n

);� � =) T

n�1

k�1

(A

2

; : : : ; A

n

);�

� =) T

n

k

(A

1

; : : : ; A

n

);�

The correctness and completeness of PTK was proved in [7]. Furthermore it was

proved in [8] that PTK is polynomially equivalent to a Frege system with threshold

connectives FC introduced in [15], and that the mutual simulations increase the

formula-depth in a proof at most by a constant.

The sequent calculus PTK

�

is de�ned exactly like PTK, but where the rules

T

n

k

-right and T

n

k

-left are replaced by the rules

T

n

k

-right1 :

� =) A

1

;� � =) T

n�1

k�1

(A

2

; : : : ; A

n

);�

� =) T

n

k

(A

1

; : : : ; A

n

);�

T

n

k

-right2 :

� =) T

n�1

k

(A

2

; : : : A

n

);�

� =) T

n

k

(A

1

; : : : ; A

n

);�

T

n

k

-left1 :

A

1

;� =) � T

n�1

k

(A

2

; : : : ; A

n

);� =) �

T

n

k

(A

1

; : : : ; A

n

);� =) �

T

n

k

-left2 :

T

n�1

k�1

(A

2

; : : : A

n

);� =) �

T

n

k

(A

1

; : : : ; A

n

);� =) �

:

It is easily shown that PTK and PTK

�

are polynomially equivalent, and that the

mutual simulations do not increase the formula-depth.

Function algebras and equational calculi

Let BASE denote the set of functions consisting of the constant 0, s

0

, s

1

,

mod2, len, trunc and #, where s

0

(x) = 2x, s

1

(x) = 2x + 1, mod2(x) := xmod 2,

len(x) := jxj = dlog

2

(x+ 1)e, trunc(x; y) := b

x

2

jyj

c and x#y := 2

jxj�jyj

, together

with the projections �

n

k

for 1 � k � n 2 N, where �

n

k

(x

1

; : : : ; x

n

) := x

k

.

Let g be an n-ary function and h

0

; h

1

be n+ 1-ary functions with h

i

(�x; y) � 1

for i = 0; 1. Then the n + 1-ary function f is de�ned by concatenation recursion

4 JAN JOHANNSEN

on notation (CRN) from g and h

0

; h

1

if f is the unique function satisfying

f(�x; 0) = g(�x)

f(�x; 2y) = 2f(�x; y) + h

0

(�x; y) for y > 0

f(�x; 2y + 1) = 2f(�x; y) + h

1

(�x; y)

The following characterization of the functions in AC

0

was given in [9]:

Proposition 1. AC

0

is the smallest class of functions containing the BASE

functions and closed under composition and CRN.

Let count(x) be the number of bits equal to 1 in the binary representation

of x, and let parity(x) := count(x)mod 2. The following characterizations of the

functions in ACC(2) and TC

0

can be extracted from the proofs of Thm. 2.1 and

2.2 in [11]:

Proposition 2. ACC(2) is the smallest class of functions that contains the

BASE functions and parity and is closed under composition and CRN, and TC

0

is the smallest class of functions containing the BASE functions and count and

closed under composition and CRN.

Based on the characterization given in Prop. 1, the equational calculus AV was

de�ned in [10]. It has an in�nite set of variables denoted x; y; : : : , possibly with

subscripts. Function symbols and terms of AV are de�ned inductively as follows:

� The constant 0 and the variables are terms.

� s

0

, s

1

, tr, mod2, S and len are unary function symbols, trunc and # are

binary function symbols and cond is a ternary function symbol. These are

the primitive function symbols of AV .

� If t is a term whose free variables are among x

1

; : : : ; x

n

, then [�x

1

: : : x

n

:t]

is an n-ary function symbol.

� If g is an n-ary function symbol and h

0

, h

1

are (n+1)-ary function symbols,

then CR[g; h

0

; h

1

] is an (n+ 1)-ary function symbol.

� If f is an n-ary function symbol and t

1

; : : : ; t

n

are terms, then f(t

1

; : : : ; t

n

)

is a term.

For sake of readability, the function symbol # is written in�x, and we write jtj

for len(t), 1 for s

1

(0) and t0 and t1 for s

0

(t) and s

1

(t) respectively. The function

symbol mod2 is denoted parity in [10]. Furthermore, AV as de�ned there has

an additional function symbol pad, which is redundant since it can be de�ned as

CR[[�x:x]; [�xy:0]; [�xy:0]]. AV has a set of axioms that are su�cient to evaluate

every closed term to a normal form built up from 0, s

0

and s

1

only. Some of these

axioms of AV are

s

0

(0) = 0; mod2(x0) = 0; mod2(x1) = 1; S(x0) = x1; S(x1) = s

0

(S(x));

cond(0; y; z) = y; cond(x0; y; z) = cond(x; y; z); cond(x1; y; z) = z;

[��x:t](�x) = t

CR[g; h

0

; h

1

](�x; y0) = cond(y; g(�x); cond(h

0

(�x; y0); ~c0; ~c1))

CR[g; h

0

; h

1

](�x; y1) = cond(h

1

(�x; y1); ~c0; ~c1)

where in the last two lines ~c is an abbreviation for CR[g; h

0

; h

1

](�x; y). The rules of

AV are the ususal rules of equational logic (symmetry, transitivity, congruence and

EQUATIONAL CALCULI AND CONSTANT DEPTH PROPOSITIONAL PROOFS 5

substitution) and a special rule of induction on notation:

t

1

[0] = t

2

[0]

t

1

[x0] = v

0

[t

1

[x]] t

2

[x0] = v

0

[t

2

[x]]

t

1

[x1] = v

1

[t

1

[x]] t

2

[x1] = v

1

[t

2

[x]]

t

1

[x] = t

2

[x]

By Prop. 1, the function symbols in AV represent exactly the functions in AC

0

.

Based on Prop. 2, we de�ne the equational calculi A2V and TV whose function

symbols represent exactly the functions in ACC(2) and TC

0

respectively. They

are de�ned like AV , but have additional primitive function symbols with axioms

on them. A2V has the additional unary function symbol parity with the axioms

parity(0) = 0 ; parity(x0) = parity(x) ;

parity(x1) = cond(parity(x); 1; 0) :

(y)

TV has the additional unary function symbol count with the axioms

count(0) = 0 ; count(x0) = count(x) ; count(x1) = S(count(x)) :(z)

The simulation

For every equation t = u of AV , a family of propositional tautologies jt = uj

n

for n � 0 is de�ned, where jt = uj

b

expresses the fact that the equality t = u holds

for all values of the variables whose lengths are bounded by b. We shall only sketch

this de�nition, the reader is referred to [10] for the complete de�nition.

First, for every function symbol f a bounding polynomial bound

f

is de�ned,

e.g. we de�ne

bound

s

0

(b) = bound

s

1

(b) = bound

S

(b) = b+ 1 ;

bound

cond

(b

1

; b

2

; b

3

) = b

2

+ b

3

:

This de�nition is extended inductively to arbitrary terms by

bound

0

= 0 ; bound

x

(b) = b ;

bound

f(t

1

(�x);::: ;t

m

(�x))

(

�

b) = bound

f

(bound

t

1

(�x)

(

�

b); : : : ; bound

t

m

(�x)

(

�

b)) :

The polynomial bound

t(�x)

(

�

b) has the property that for values of the variables whose

lengths are bounded by

�

b, the value of t(�x) is bounded in length by bound

t(�x)

(

�

b).

For every variable x of AV let Q

i

[x] and P

i

[x] be propositional variables who

are intended to say jxj > i and \the ith bit in x is 1" respectively. Furthermore let

P be a variable that is di�erent from all these, and let ? and > abbreviate P ^:P

and P _ :P respectively. Then for each term t whose variables are among the

x

1

; : : : ; x

m

and non-negative integers i and b

1

; : : : ; b

m

two propositional formulas

q

b

1

;::: ;b

m

i

[t] and p

b

1

;::: ;b

m

i

[t] in these variables are de�ned. The intended meaning of

these formulas is jtj > i and \the ith bit in t is 1", provided that jx

j

j � b

j

for each

j � m.

These formulas are de�ned inductively. First we de�ne q

i

[0] = p

i

[0] = ?, and

for a variable x

q

b

i

[x] =

�

Q

i

[x] if i < b

? else

p

b

i

[x] =

�

P

i

[x] if i < b

? else

:

6 JAN JOHANNSEN

Then the formulas q

�

b

i

[t] and p

�

b

i

[t] are de�ned for terms consisting of a primitive

function symbol applied to variables, e.g.

q

b

i

[x0] =

�

q

b

0

[x] if i = 0

q

b

i�1

[x] else

p

b

i

[x0] =

�

? if i = 0

p

b

i�1

[x] else

q

b

i

[x1] =

8

>

<

>

:

? if i = 0 = b

> if i = 0 < b

q

b

i�1

[x] else

p

b

i

[x1] =

8

>

<

>

:

? if i = 0 = b

> if i = 0 < b

p

b

i�1

[x] else

q

b

1

;b

2

;b

3

[cond(x; y; z)] = (:q

b

1

0

[x] ^ q

b

2

i

[y]) _ (q

b

1

0

[x] ^ q

b

3

i

[z])

p

b

1

;b

2

;b

3

[cond(x; y; z)] = (:q

b

1

0

[x] ^ p

b

2

i

[y]) _ (q

b

1

0

[x] ^ p

b

3

i

[z])

q

b

i

[S(x)] =

(

q

b

i

[x] _

V

j<i

p

b

j

[x] if i < b

? else

p

b

i

[S(x)] =

(

(p

b

i

[x] ^

W

j<i

:p

b

j

[x]) _ (:p

b

i

[x] ^

V

j<i

p

b

j

[x]) if i > 0

:p

b

i

[x] else

Now let t = f(t

1

(�x); : : : ; t

m

(�x)), and let � be the substitution replacing Q

j

[y

k

] by

q

�

b

j

[t

k

(�x)] and P

j

[y

k

] by p

�

b

j

[t

k

(�x)] for each j � m, then we de�ne

q

�

b

i

[t] := �

�

q

bound

t

1

(�x)

(

�

b);::: ;bound

t

m

(�x)

(

�

b)

i

[f(y

1

; : : : ; y

m

)]

�

and p

�

b

i

[t] analogously. The de�nition of q

b

i

[f(�x)] and p

b

i

[f(�x)] for compound function

symbols is quite involved and is omitted here for sake of brevity.

For a variable x the formula con

b

[x] is de�ned as

b�2

^

i=0

q

b

i+1

[x]! q

b

i

[x] ^

b�1

^

i=0

p

b

i

[x]! q

b

i

[x] ^

b

^

i=1

len

b

i

[x]! p

b

i�1

[x]

where len

b

i

[x] is de�ned as q

b

i�1

[x] ^ :q

b

i

[t]. The formula jt = uj

�

b

k

is

m

^

i=1

con

b

i

[x

i

]!

k�1

^

i=0

(q

�

b

i

[t] $ q

�

b

i

[u]) ^ (p

�

b

i

[t] $ p

�

b

i

[u])

where the variables of t and u are among x

1

; : : : ; x

m

. Finally, let maxb

t;u

(

�

b) be an

abbreviation for max(bound

t

(

�

b); bound

u

(

�

b)), then we let

jt = uj

b

:= jt = uj

b;::: ;b

maxb

t;u

(b;::: ;b)

:

Now we are ready to state the following theorem, which was proved in [10].

Theorem 3. If AV ` t = u, then the tautologies jt = uj

n

for n � 0 have

polynomial size, constant depth Frege proofs.

We shall now extend the translation de�ned above in such a way that equations

in the languages of A2V and TV are mapped to families of tautologies in the

languages of PK� and PTK respectively.

The de�nition of the bounding polynomials bound

t

is extended by the clauses

for the additional function symbols

bound

parity

(b) = 1 bound

count

(b) = b :

EQUATIONAL CALCULI AND CONSTANT DEPTH PROPOSITIONAL PROOFS 7

The de�nition of the formulas q

�

b

i

[t] and p

�

b

i

[t] is also extended by clauses for the

additional primitive function symbols. For the additional function symbol parity

of A2V we de�ne

q

b

0

[parity(x)] = p

b

0

[parity(x)] =

8

>

<

>

:

? if b = 0

p

b

0

[x] if b = 1

L

b

(p

b

0

[x]; : : : ; p

b

b�1

[x]) else

;

q

b

i

[parity(x)] = p

b

i

[parity(x)] = ? for i > 0.

For the additional function symbol count of TV we �rst de�ne the PTK-formula

cnt

b

i

[x]

cnt

b

i

[x] =

8

>

>

>

<

>

>

>

:

:T

b

1

(p

b

0

[x]; : : : ; p

b

b�1

[x]) if i = 0

T

b

i

(p

b

0

[x]; : : : ; p

b

b�1

[x]) ^ :T

b

i+1

(p

b

0

[x]; : : : ; p

b

b�1

[x]) if 1 � i < b

T

b

b

(p

b

0

[x]; : : : ; p

b

b�1

[x]) if i = b

? else

;

and then

q

b

i

[count(x)] =

�

T

b

2

i

(p

b

0

[x]; : : : ; p

b

b�1

[x]) if 2

i

� b

? else

;

p

b

i

[count(x)] =

_

j�b

j3i

cnt

b

j

[x] ;

where j 3 i means that the ith bit in j is 1. With these additional clauses, the

families jt = uj

n

for equations t = u of A2V and TV are de�ned as above, and we

can state our main theorem.

Theorem 4. If A2V ` t = u, then the tautologies jt = uj

n

for n � 0 have

polynomial size, constant depth proofs in PK�. If TV ` t = u, then the tautologies

jt = uj

n

for n � 0 have polynomial size, constant depth proofs in PTK

�

.

By the above mentioned equivalences it follows that proofs in A2V and TV

can be simulated by polynomial size, constant depth proofs in F (Mod

2

) and FC

respectively.

Proof. Since both PK� and PTK

�

can polynomially simulate a Frege sys-

tem, where the simulations increase the depth at most by a constant, there are

polynomial size, constant depth proofs of jt = uj

n

for every axiom t = u of AV

by Thm. 3. In Lemmas 5 and 6 below, we shall show that the translations of the

additional axioms of A2V and TV have polynomial size, constant depth proofs in

PK� and PTK

�

, respectively.

To complete the proof, it remains to show that for the rules of the equational

calculi A2V and TV , we get a polynomial size, constant depth proof of the con-

clusion from polynomial size, constant depth proofs of the premises, in both PK�

and PTK

�

.

Since the rules of A2V and TV are the same as those of AV and constant

depth Frege proofs of polynomial size can be simulated by polynomial size, constant

depth proofs in PK� and PTK

�

, the proof of this for the case of AV in [10] can

be adapted to our case. The only change necessary is the incorporation of the

additional function symbols in those places where the proof uses induction on the

8 JAN JOHANNSEN

complexity of a term in AV . It is possible, although tedious, to show that these

inductive arguments remain valid for terms in A2V and TV .

It remains to prove the promised lemmas, which will almost take the rest of the

paper.

Lemma 5. The translations of the axioms (y) of A2V have polynomial size,

constant depth proofs in PK�.

Proof. The formulas jparity(0) = 0j

n

do not depend on n and are true, hence

they obviously have polynomial size, constant depth proofs in PK�.

Now we have to prove in PK� the formulas jparity(x0) = parity(x)j

b

1

. The

formulas q

b

0

[parity(x0)] and p

b

0

[parity(x0)] are both

L

b+1

(p

b+1

0

[x0]; : : : ; p

b+1

b

[x0]) =

L

b+1

(?; P

0

[x]; : : : ; P

b�1

[x]) ;

and the formulas q

b

0

[parity(x)] and p

b

0

[parity(x0)] are both

L

b

(P

0

[x]; : : : ; P

b�1

[x]).

Thus we prove both required equivalences without using the assumption con

b

[x] by

giving short proofs of

L

k+1

(?; A

1

; : : : ; A

k

) $

L

k

(A

1

; : : : ; A

k

)

for propositional variables A

1

; : : : ; A

k

. These proofs have a constant number of

steps, hence are of linear size, since we de�ned

L

k+1

by association to the left.

Finally we have to give proofs of jparity(x1) = cond(parity(x); 1; 0)j

b

1

. The

formulas q

b

0

[parity(x1)] and p

b

0

[parity(x1)] are by de�nition both

L

b+1

(>; P

0

[x]; : : : ; P

b�1

[x]) ;

and the formulas q

b

0

[cond(parity(x); 1; 0)] and p

b

0

[cond(parity(x); 1; 0)] are

�

:q

b

0

[parity(x)] ^>

�

_

�

q

b

0

[parity(x)] ^?

�

:(1)

Their equivalence can again be proved without use of the assumption con

b

[x]. The

formulas (1) are shown to be equivalent to :q

b

0

[parity(x)] by short, constant depth

proofs without use of the �-rules, hence it remains to prove

L

k+1

(>; A

1

; : : : ; A

k

) $:

L

k

(A

1

; : : : ; A

k

)

for propositional variables A

1

; : : : ; A

k

. These equivalences are again easily seen to

have short proofs in PK�.

Lemma 6. The translations of the axioms (z) of TV have polynomial size, con-

stant depth proofs in PTK

�

.

Proof. The formulas jcount(0) = 0j

n

are again true formulas that do not

depend on n, hence there are trivially polynomial size, constant depth proofs in

PTK

�

of them.

We have to give PTK

�

-proofs of the formulas jcount(x0) = count(x)j

b

b+1

. So

under the hypothesis con

b

[x], which will in fact not be needed, we have to deduce

q

b

i

[count(x0)] $ q

b

i

[count(x)] and p

b

i

[count(x0)] $ p

b

i

[count(x)]

for every i � b. For i with 2

i

� b + 1, the formula q

b

i

[count(x0)] is de�ned as

T

b+1

2

i

(p

b+1

0

[x0]; : : : ; p

b+1

b

[x0]), which is T

b+1

2

i

(?; P

0

[x]; : : : ; P

b�1

[x]). On the other

EQUATIONAL CALCULI AND CONSTANT DEPTH PROPOSITIONAL PROOFS 9

hand, q

b

i

[count(x)] is T

b

2

i

(P

0

[x]; : : : ; P

b�1

[x]) for i with 2

i

� b, and ? for 2

i

> b.

Furthermore, the formulas p

b

i

[count(x0)] and p

b

i

[count(x)] are

_

j�b+1

j3i

cnt

b+1

j

[x0] and

_

j�b

j3i

cnt

b

j

[x] :

To show their equivalence, we have to prove cnt

b

j

[x] $ cnt

b+1

j

[x0] for every j � b

and :cnt

b+1

b+1

[x0] in PTK

�

. All the required formulas are deduced by short, constant

depth proofs from

T

m+1

k

(?; A

1

; : : : ; A

m

) $ T

m

k

(A

1

; : : : ; A

m

)

for k � m and :T

m+1

m+1

(?; A

1

; : : : ; A

m

), for variables A

1

; : : : ; A

m

. Short proofs of

these equivalences are easily given using the rules for T

n

k

.

The most di�cult part is to give proofs of jcount(x1) = S(count(x))j

b

b+1

. First

we will give proofs of the equivalences q

b

i

[count(x1)] $ q

b

i

[S(count(x))] for i � b

without using the assumption con

b

[x].

The formula q

b

i

[count(x1)] is by de�nition T

b+1

2

i

(>; P

0

[x]; : : : ; P

b�1

[x]) if 2

i

�

b+ 1 and ? else, and the formula q

b

i

[S(count(x))] is

q

b

i

[count(x)] _

^

j<i

_

k�b

k3j

cnt

b

k

[x] :

hence we have to show

T

b+1

2

i

(>;

~

P [x]) $ T

b

2

i

(

~

P [x]) _

^

j<i

_

k�b

k3j

cnt

b

k

[x] for 2

i

� b,(I)

T

b+1

2

i

(>;

~

P [x]) $

^

j<i

_

k�b

k3j

cnt

b

k

[x] for 2

i

= b+ 1,(II)

:

^

j<i

_

k�b

k3j

cnt

b

k

[x] for 2

i

> b+ 1,(III)

where

~

P [x] is short for P

0

[x]; : : : ; P

b�1

[x]. For this, we shall need short proofs of

the sequents

T

k

j

(A

1

; : : : ; A

k

) =) T

k

j�1

(A

1

; : : : ; A

k

)(2)

for every 1 < j � k and variables A

1

; : : : ; A

k

. These are easily deduced using the

rules T

n

k

-left2 and T

n

k

-right2. By use of (2), one can give proofs of the sequents

cnt

b

�

[x]; cnt

b

�

[x] =) for every � < � � b, of size O(b(� � �)).

We treat (II) �rst. The direction from left to right of the equivalence is obtained

by a ^-right inference from the sequents

T

b+1

2

i

(>;

~

P [x]) =)

_

k�b

k3j

cnt

b

k

[x] for j < i,

which we get by weakening and _-right from T

b+1

2

i

(>;

~

P [x]) =) cnt

b

b

[x], since

b = 2

i

� 1, and hence b 3 j for every j < i. These last sequents are by de�nition

10 JAN JOHANNSEN

T

b+1

b+1

(>;

~

P [x]) =) T

b

b

(

~

P [x]) and are easily deduced by the ^-rules. For the other

direction, we have to give proofs of

^

j<i

_

k�b

k3j

cnt

b

k

[x] =) P

`

[x]

for each ` � b� 1, from which together with =) > we obtain the desired sequent

by a ^-right inference. The sequent above is obtained by ^-left and a cut from

cnt

b

b

[x] =) P

`

[x], which are easily easily derived as b = 2

i

� 1, and

_

k�b

k30

cnt

b

k

[x] ; : : : ;

_

k�b

k3(i�1)

cnt

b

k

[x] =) cnt

b

b

[x] :(3)

Each of the disjunctions on the left has d

b+1

2

e terms. This sequent is deduced by

two applications of _-left from d

b+1

2

e

2

sequents of the form

cnt

b

�

[x] ; cnt

b

�

[x] ;

_

k�b

k32

cnt

b

k

[x] ; : : : ;

_

k�b

k3(i�1)

cnt

b

k

[x] =) cnt

b

b

[x] :

For � 6= �, these sequents have short proofs using (2), and the remaining ones with

� = � are again obtained by _-left from d

b+1

2

e premises of the form

cnt

b

�

[x] ; cnt

b

�

[x] ; cnt

b

�

0

[x] ;

_

k�b

k33

cnt

b

k

[x] ; : : : ;

_

k�b

k3(i�1)

cnt

b

k

[x] =) cnt

b

b

[x]

for each such �. But there are only d

b+1

4

e values of � for which cnt

b

�

[x] occurs in

the �rst and second disjunction in (3). Again, most of these sequents have short

proofs using (2), except for the d

b+1

8

e of them with �

0

= �. After i� 1 iterations of

this process, the only remaining sequent to be deduced is the trivial

cnt

b

b

[x] ; : : : ; cnt

b

b

[x] =) cnt

b

b

[x] ;

since b = 2

i

� 1 is the only value k � b for which k 3 j holds for every j < i. The

size of these derivations can be calculated as follows: Each of the short proofs using

(2) is of size O(b

2

), hence the whole proof is of size

O(b

2

) �

�

b+ 1

2

�

�

X

1�j<i

�

b+ 1

2

j

�

= O(b

4

) :

For case (III), we have to deduce the sequent

_

k�b

k30

cnt

b

k

[x] ; : : : ;

_

k�b

k3(i�1)

cnt

b

k

[x] =) :

A proof of this is constructed analogously to the proof of (3) above, where this time

there is no sequent remaining after the i� 1 steps, since there is no value k � b for

which k 3 j holds for every j < i.

For case (I), observe that the following sequent is easily deduced:

T

b

2

i

�1

(

~

P [x]) =) T

b

2

i

(

~

P [x]); cnt

b

2

i

�1

[x] :

EQUATIONAL CALCULI AND CONSTANT DEPTH PROPOSITIONAL PROOFS 11

Since 2

i

� 1 3 j for every j < i, we get from this like in the proof of the �rst

direction of (II)

T

b

2

i

�1

(

~

P [x]) =) T

b

2

i

(

~

P [x]);

^

j<i

_

k�b

k3j

cnt

b

k

[x] ;

from which we obtain the left-to-right direction of (I) by T

b+1

2

i

-left2. For the other

direction, we �rst need proofs of

^

j<i

_

k�b

k3j

cnt

b

k

[x] =) T

b

2

i

�1

(

~

P [x]) :(4)

These proofs can again be constructed by the method given for (3) in (II), since

every value k for which k 3 j for each j < i is at least k � 2

i

� 1. Now from (4)

and =) > one gets by a T

b+1

2

i

-right1

^

j<i

_

k�b

k3j

cnt

b

k

[x] =) T

b+1

2

i

(>;

~

P [x])

and from this and T

b

2

i

(

~

P [x]) =) T

b+1

2

i

(>;

~

P [x]), a _-left yields the right-to-left

direction of (I), which completes the proof of q

b

i

[count(x1)] $ q

b

i

[S(count(x)].

Now we give proofs p

b

i

[count(x1)] $ p

b

i

[S(count(x)], again without using the

assumption con

b

[x]. For this, we �rst need short proofs of the equivalence

cnt

b

j

[x] $ cnt

b+1

j+1

[s

1

(x)] ;(5)

which can easily be given using (2). For i = 0, by de�nition we have to prove the

equivalence

_

j�b

j30

cnt

b

j

[x1] $:

_

j�b

j30

cnt

b

j

[x] :

For the left-to-right direction, by (5) it is su�cient to deduce

_

j�b

j odd

cnt

b

j

[x] ;

_

j�b

j even

cnt

b

j

[x] =) ;

which is obtained by two applications of _-left from d

b+1

2

e

2

premises of the form

cnt

b

�

; cnt

b

�

=) for � � b odd and � � b even. These premises have, as noted above,

short proofs using (2). For the other direction, we �rst show by induction that

there are proofs of the sequents

T

b

k

(

~

P [x]) =) cnt

b

k

[x]; : : : ; cnt

b

b

[x](6)

for every k � b of size O(b(b� k + 1)). This is trivial for k = b, and a proof of the

sequent (6) for k�1 is easily given using (6) for k. This yields a proof of size O(b

2

)

of the sequent

=) cnt

b

0

[x]; cnt

b

1

[x]; : : : ; cnt

b

b

[x] :

Using the equivalence (5), we can deduce from this

=)

_

j�b

j odd

cnt

b

j

[x] ;

_

j�b+1

j odd

cnt

b+1

j

[x1] ;

12 JAN JOHANNSEN

which yields the desired right-to-left direction and thus completes the case i = 0.

For i > 0, the formula p

b

i

[S(count(x))] is

�

p

b

i

[count(x)] ^

_

j<i

:p

b

j

[count(x)]

�

_

�

:p

b

i

[count(x)] ^

^

j<i

p

b

j

[count(x)]

�

;

thus the left-to-right direction of p

b

i

[count(x1)] $ p

b

i

[S(count(x))] follows by a

short, constant depth proof using (5) from the two sequents

_

j�b

(j+1)3i

cnt

b

j

[x] ; p

b

i

[count(x)] =) :

^

j<i

p

b

j

[count(x)](7)

_

j�b

(j+1)3i

cnt

b

j

[x] ; :p

b

i

[count(x)] =)

^

j<i

p

b

j

[count(x)] :(8)

Recalling the de�nition of p

b

j

[count(x)], we see that the sequent (7) is obtained from

at most d

b+1

2

e sequents of the form

cnt

b

�

[x] ;

_

j�b

j30

cnt

b

j

[x] ; : : : ;

_

j�b

j3i

cnt

b

j

[x] =) ;

where � is such that (� + 1) 3 i. Since � 3 k for all k � i would imply (� + 1) 63 i,

the formula cnt

b

�

[x] cannot appear in all of the disjunctions. Let k

0

be such that

� 63 k

0

, then we obtain the sequent above from at most d

b+1

2

e sequents of the form

cnt

b

�

[x] ; cnt

b

�

[x] ;

_

j�b

j30

cnt

b

j

[x] ; : : : ;

_

j�b

j3i

cnt

b

j

[x] =) ;

for each � with � 3 k

0

and hence � 6= �, which have short constant depth PTK

�

-

proofs. Next (8) is obtained from at most d

b+1

2

e sequents of the form

cnt

b

�

[x] =)

_

j�b

j3i

cnt

b

j

[x] ;

^

j<i

_

k�b

k3j

cnt

b

k

[x](9)

with (� + 1) 3 i. Now if � 3 i, then (9) is obtained by weakening and _-right from

an axiom since cnt

b

�

[x] appears in the �rst disjunction. Otherwise � 3 j must hold

for every j < i, hence we get (9) from i sequents

cnt

b

�

[x] =)

_

j�b

j3i

cnt

b

j

[x] ;

_

k�b

k3j

cnt

b

k

[x]

for j < i, which can then be obtained as above since cnt

b

�

[x] must appear in the

second disjunction.

Finally the right-to-left direction p

b

i

[S(count(x))] ! p

b

i

[count(x1)] is deduced

by short proofs using (5) from the two sequents

p

b

i

[count(x)] =)

^

j<i

p

b

j

[count(x)] ;

_

j�b

(j+1)3i

cnt

b

j

[x](10)

p

b

0

[count(x)] ; : : : ; p

b

i�1

[count(x)] =) p

b

i

[count(x)] ;

_

j�b

(j+1)3i

cnt

b

j

[x] :(11)

EQUATIONAL CALCULI AND CONSTANT DEPTH PROPOSITIONAL PROOFS 13

The sequent (10) is obtained by _-left and ^-right from i � d

b

2

e sequents of the form

cnt

b

�

[x] =)

_

k�b

k3j

cnt

b

k

[x] ;

_

j�b

(j+1)3i

cnt

b

j

[x]

for � with � 3 i and j < i. Now if � is such that (� + 1) 3 i, then cnt

b

�

[x] appears

in the second disjunction. Otherwise it must be the case that � 3 j for every j < i,

hence cnt

b

�

[x] appears in the �rst disjunction. In both cases the sequent above is

deduced by weakenings and _-right from an initial sequent.

By the method used for (3) above, (11) can be deduced using (2) from the

sequents

cnt

b

�

[x]; : : : ; cnt

b

�

[x] =)

_

j�b

j3i

cnt

b

j

[x] ;

_

j�b

(j+1)3i

cnt

b

j

[x]

for every � with � 3 k for every k < i. Now if � 3 i, then cnt

b

�

[x] appears in the

�rst disjunction, and otherwise (� + 1) 3 i, hence cnt

b

�

[x] appears in the second

disjunction, hence in either case this sequent is easily deduced.

Conclusion

We have presented equational calculi that prove equations between functions in

ACC(2) and TC

0

, and shown that proofs in these can be simulated by polynomial

size, constant depth proofs in Frege systems extended by modulo 2 counting and

threshold connectives, respectively. It seems to be straightforward to de�ne ana-

logous calculi for the classes ACC(m) for m > 2 and show these can be simulated

by constant depth proofs in F (Mod

m

) in the same way. Besides supporting the

intuitive correspondence between these complexity classes and proof systems, this

provides us with a tool for proving the existence of polynomial size, constant depth

proofs in these proof systems.

Actually, the relationship between PV and extended Frege proofs is much

tighter than those presented in [10] and the present paper, in that extended Frege

proofs are the maximal proof system among those whose correctness can be proved

in PV . It should be possible, although tedious, to establish a similarly close con-

nection between ALV from [10] and Frege proofs, using the fact that evaluation of

boolean formulas can be done inNC

1

[6] (cf. also [16] for an e�ort in this direction).

To establish such a tight connection between TV , A2V and AV and their

corresponding proof systems, we have to overcome the obstacle that evaluation of

boolean formulas is complete for NC

1

, hence it is not possible in AC

0

and ACC(2),

and in TC

0

only if TC

0

= NC

1

. Therefore it is not clear if the correctness of proofs

can be expressed in these calculi.

The following remedy was suggested by P. Clote: The evaluation of threshold

formulas of a �xed maximal depth d should be possible in TC

0

, and by formalizing

that we could then express the correctness of PTK-proofs of depth d by TV -terms.

Then TV should be able to prove the correctness of PTK-proofs of depth d, for

every d. A similar relationship might hold between A2V and F (Mod

2

)-proofs, as

well as AV and Frege proofs.

14 JAN JOHANNSEN

References

1. Miklos Ajtai, The complexity of the pigeonhole principle, 29th Sympos. on Foundations of

Computer Science, IEEE, 1988, pp. 346{355.

2. , Parity and the pigeonhole principle, Feasible Mathematics (Samuel R. Buss and

Philip J. Scott, eds.), Birkh�auser, Boston, 1990, pp. 1{24.

3. Paul Beame, Russell Impagliazzo, Jan Kraj���cek, Toniann Pitassi, and Pavel Pudl�ak, Lower

bounds on Hilbert's Nullstellensatz and propositional proofs, Proc. London Math. Soc. 73

(1996), 1{26.

4. Paul Beame, Russell Impagliazzo, Jan Kraj���cek, Toniann Pitassi, Pavel Pudl�ak, and Alan

Woods, Exponential lower bound for the pigeonhole principle, Proc. 24th Sympos. Theory of

Computing, 1992, pp. 200{221.

5. Paul Beame and Toniann Pitassi, An exponential separation between the matching principle

and the pigeonhole principle, Proc. LICS '93, 1993, pp. 308{319.

6. Samuel R. Buss, The Boolean formula value problem is in ALOGTIME, Proceedings of the

19th Sympos. Theory of Computing, ACM, 1987, pp. 123{131.

7. Samuel R. Buss and Peter Clote, Cutting planes, connectivity and threshold logic, Arch. Math.

Logic 35 (1995), 34 �.

8. , Threshold logic proof systems, unpublished manuscript, 1995.

9. Peter Clote, Sequential, machine independent characterizations of the parallel complexity

classes ALogTIME; AC

k

; NC

k

and NC, Feasible Mathematics (Samuel R. Buss and

Philip J. Scott, eds.), Birkh�auser, Boston, 1990, pp. 49{69.

10. , ALOGTIME and a conjecture of S. A. Cook, Ann. Math. Arti�cial Intelligence 6

(1992), 57{106.

11. Peter Clote and Gaisi Takeuti, First order bounded arithmetic and small boolean circuit com-

plexity classes, Feasible Mathematics II (Peter Clote and Je�rey Remmel, eds.), Birkh�auser,

Boston, 1995, pp. 154{218.

12. Alan Cobham, The intrinsic computational di�culty of functions, Proc. 2nd International

Congress on Logic, Methodology and Philosophy of Science, 1965, pp. 24{30.

13. Stephen A. Cook, Feasible constructive proofs and the propositional calculus, Proc. 7th Sym-

pos. Theory of Computing, 1975, pp. 83{97.

14. Stephen A. Cook and Robert A. Reckhow, The relative e�ciency of propositional proof sys-

tems, J. Symbolic Logic 44 (1979), 36{50.

15. Jan Kraj���cek, On Frege and Extended Frege proof systems, Feasible Mathematics II (Peter

Clote and Je�rey Remmel, eds.), Birkh�auser, Boston, 1995, pp. 284{319.

16. Fran�cois Pitt, A quanti�er-free theory based on a string algebra for NC

1

, this volume.

17. Alasdair Urquhart, Hard examples for resolution, J. Assoc. Comput. Mach. 34 (1987), 209{

219.

18. , The complexity of propositional proofs, Bull. Symbolic Logic 1 (1995), 425{467.

Informatik 1, Universit

�

at Erlangen-N

�

urnberg, Erlangen, Germany

Current address: Department of Mathematics, University of California, San Diego, La Jolla,

California 92093-0112

E-mail address: johannsn@math.ucsd.edu

