
CTL+ is Complete for Double Exponential Time

Jan Johannsen and Martin Lange

Institut für Informatik
Ludwig-Maximilians-Universität München

Munich, Germany
{jjohanns,mlange}@informatik.uni-muenchen.de

Abstract. We show that the satisfiability problem for CTL+, the branch-
ing time logic that allows boolean combinations of path formulas inside
a path quantifier but no nesting of them, is 2-EXPTIME-hard. The con-
struction is inspired by Vardi and Stockmeyer’s 2-EXPTIME-hardness
proof of CTL∗’s satisfiability problem. As a consequence, there is no
subexponential reduction from CTL+ to CTL which preserves satisfia-
bility.

1 Introduction

In the early 80s, a family of branching time logics was defined by Emerson and
Halpern [3, 4]. This included the commonly known logics CTL and CTL∗ as well
as the less known logic CTL+.

CTL formulas can only speak about states of a transition system, while CTL∗

allows properties of paths and states to be expressed. CTL+ is the fragment of
CTL∗ which does not allow temporal operators to be nested. It subsumes CTL
syntactically.

Emerson and Halpern [3] already showed that every CTL+ formula is equiv-
alent to a CTL formula. The translation, however, yields formulas of exponential
length. Recently, Wilke [10] and Adler and Immerman [1] have shown that this
is unavoidable, i.e. that there are CTL+ formulas of size n such that every equiv-
alent CTL formula is of size Ω(n!).

This gap becomes apparent for example when the complexity of the model
checking problem for these logics is considered. For CTL the problem is PTIME-
complete, even in linear time, while the CTL+ model checking problem is ∆2-
complete in the polynomial time hierarchy [8].

Kupferman and Grumberg [7] have shown that one can relax the syntactic
restrictions CTL imposes on branching time formulas without having to give
up linear time model checking. They define a logic CTL2, which allows two
temporal operators in the scope of a path quantifier - either nested or a boolean
combination thereof. Syntactically, CTL+ and CTL2 are incomparable although
semantically CTL2 strictly subsumes CTL and therefore CTL+ as well. To the
best of our knowledge, no complexity bounds on CTL2’s satisfiability problem
are given.

In contrast, CTL∗ which is known to be strictly more expressive than CTL,
CTL+ and even CTL2, has a PSPACE-complete model checking problem [6].

Concerning the satisfiability checking problem, CTL is EXPTIME-complete
while CTL∗ is 2-EXPTIME-complete. Inclusion in 2-EXPTIME was proved by
Emerson and Jutla [5] after it had been shown to be contained in various de-
terministic and nondeterministic complexity classes between 2-EXPTIME and
4-EXPTIME. 2-EXPTIME-hardness was shown by Vardi and Stockmeyer [9]
using a reduction from the word problem for an alternating exponential space
bounded Turing Machine.

We use the basic ideas of their construction in order to prove 2-EXPTIME-
hardness of CTL+’s satisfiability checking problem. For instance, we also encode
the computation tree of an alternating exponential space bounded Turing Ma-
chine on an input word by a tree model for a CTL+ formula that describes
the machine’s behaviour. However, in order to overcome CTL+’s weaknesses in
expressivity compared to CTL∗ we need to make amendments to the models
and the resulting formulas. Note that CTL+ is, for example, not able to speak
about the penultimate state on a finite path which is a crucial point in Vardi
and Stockmeyer’s reduction.

To overcome this problem we use a special type of alternating Turing Ma-
chine which is easily seen to be equivalent to a common one in terms of space
complexity. This Turing Machine has states of three different types: those in
which the tape head is deterministically moved, as well as existentially and uni-
versally branching states in which the symbol under the tape head is replaced
and no movement takes place.

For this sort of alternating Turing Machine it becomes possible to describe
the machine’s behaviour by a CTL+ formula. The distinction of Turing Machine
states does not require formulas that speak about more than two consecutive
states on a path of a transition system.

There are other CTL∗ formulas in Vardi and Stockmeyer’s paper which can-
not easily be transformed into CTL+ because of CTL+’s restriction regarding
the nesting of path operators. E.g. the natural way of expressing that some event
E happens at most once along a path uses two nested until formulas (“it is not
the case that E happens at some point and at another point later on”). For-
mulas of this kind occur in properties like “there is exactly one tape head per
configuration”. To make the reduction work for CTL+ too, we use additional
atomic propositions in a model for the resulting CTL+ formula.

Completeness follows from the fact that the satisfiability checking problem
for CTL∗ is in 2-EXPTIME, but also because CTL+ can be translated into
CTL at the cost of an exponential blow-up. This does not only – to the best
of our knowledge – provide the first complexity-theoretical completeness result
for the CTL+ satisfiability problem. It also shows the curious fact that con-
cerning expressiveness CTL and CTL+ fall into the same class different from
CTL∗. Concerning the model checking problem the three logics were shown to
be complete for three (probably) different classes. But regarding satisfiability,

2

CTL+ and CTL∗ are complete for the same class which is different from the
complexity of CTL satisfiability.

Finally, we present a consequence of CTL+’s 2-EXPTIME-hardness. Wilke
was the first to prove an exponential lower bound on the size of CTL formulas
that arise under an equivalence preserving translation from CTL+ [10]. This
was improved by Adler and Immerman, who showed that there is indeed an n!
lower bound [1]. The 2-EXPTIME-hardness of the CTL+ satisfiability problem
strengthens Wilke’s result in a different way: there is no subexponential reduction
from CTL+ to CTL that preserves satisfiability.

2 Preliminaries

The logic CTL+. Let P be a finite set of propositional constants including tt

and ff. A labelled transition system is a triple T = (S,→, L) s.t. (S,→) is a
directed graph, and L : S → 2P labels the elements of S, called states, with
tt ∈ L(s), ff 6∈ L(s) for all s ∈ S. T is called total if for all s ∈ S there is an
s′ ∈ S s.t. s→ s′.

A path in a total transition system T is an infinite sequence π = s0s1 . . . of
states s.t. si → si+1 for all i ∈ N. With πi we denote the suffix of π starting
with the i-th state.

Formulas of CTL+ are given by the following grammar.

ϕ ::= q | ϕ∨ϕ | ¬ϕ | Eψ

ψ ::= q | ψ ∨ψ | ¬ψ | Xϕ | ϕUϕ

where q ranges over P . The ϕ are often called state formulas while the ψ are
path formulas. Only state formulas are CTL+ formulas. Path formulas can only
occur as subformulas of these.

We will use the standard abbreviations ϕ∧ψ := ¬(¬ϕ∨¬ψ), ϕ→ ψ := ¬ϕ∨ψ,
Aϕ := ¬E¬ϕ, Fϕ := ttUϕ and Gϕ := ¬F¬ϕ. Furthermore, we will use a special
until formula Fψϕ := ¬ψU(ψ ∧ϕ) which says that eventually ϕ holds in the first
moment when ψ holds, too.

Formulas of CTL+ are interpreted over paths π = s0s1 . . . of a total transition
system T = (S,→, L).

π |= q iff q ∈ L(s0)
π |= ϕ∨ψ iff π |= ϕ or π |= ψ

π |= ¬ϕ iff π 6|= ϕ

π |= Eϕ iff ∃π′, s.t. π′ = s0 . . . and π′ |= ϕ

π |= Xϕ iff π1 |= ϕ

π |= ϕUψ iff ∃k ∈ N s.t. πk |= ψ and ∀i < k : πi |= ϕ

Since the truth value of a state formula ϕ in a path π = s0s1 . . . only depends
on s0, it is possible to write s |= ϕ for a state s of a transition system and such
a formula ϕ. A state formula ϕ is called satisfiable if there is a transition system
T with a state s, s.t. s |= ϕ.

3

Alternating Turing Machines. We use the following model of alternating Turing
Machine, which differs slightly from the standard model [2], but is easily seen to
be equivalent w.r.t. space complexity. An alternating Turing Machine M is of
the form M = (Q,Σ, q0, qa, qr, δ), where Q is the set of states, Σ is the alphabet,
which contains a blank symbol � ∈ Σ, and q0, qa, qr ∈ Q.

The set Q of states is partitioned into Q = Q∃ ∪Q∀ ∪Qm ∪ {qa, qr}, where
we write Qb for Q∃ ∪Q∀, these are the branching states. The transition relation
δ is of the form

δ ⊆
(

Qb ×Σ ×Q×Σ
)

∪
(

Qm ×Σ ×Q× {L,R}
)

.

In a branching state q ∈ Qb, the machine can act nondeterministically and writes
on the tape, i.e., for each a ∈ Σ, there can be several transitions (q, a, q′, b) ∈ δ

for q′ ∈ Q and b ∈ Σ, meaning that the machine overwrites the a in the current
tape cell with b, the machine enters state q′, and the head does not move.

In a state q ∈ Qm, the machine acts deterministically and moves its head,
i.e., for each a ∈ Σ, there is exactly one transition (q, a, q′, D) ∈ δ, for q′ ∈ Q

and D ∈ {L,R}, meaning that the head moves to the left (L) or right (R), and
the machine enters state q′. For q ∈ {qa, qr}, there are no transitions in δ, and
the machine halts.

We assume that the machine only halts when the state is qa or qr. A halting
configuration is accepting iff the state is qa. For the other configurations, the
acceptance behaviour depends on the kind of state:

If the state is in Qm, then the configuration is accepting iff its unique suc-
cessor is accepting. If the state is in Q∃, then the configuration is accepting iff
at least one of its successors is accepting. If the state is in Q∀, then the configu-
ration is accepting iff all of its successors are accepting. The whole computation
accepts if the initial configuration is accepting.

Double exponential time. The complexity class of double exponential time is
defined as

2-EXPTIME =
⋃

k∈N

DTIME(22k·n

)

where DTIME(f(n)) is the class of all languages which are accepted by a deter-
ministic Turing Machine in time f(n) where n is the length of the input word
at hand.

It is well-known [2] that 2-EXPTIME coincides with

AEXPSPACE =
⋃

k∈N

ASPACE(2k·n)

the class of all languages accepted by an alternating Turing Machine using space
which is at most exponential in the size of the input word.

3 The Reduction

Theorem 1. Satisfiability of CTL+ is 2-EXPTIME-hard.

4

Proof. Suppose M = (Q,Σ, q0, qa, qr, δ) is an alternating exponential space
bounded Turing Machine. Let w = a0 . . . an−1 ∈ Σ∗ be an input for M. W.l.o.g.
we assume the space needed by M on input w to be bounded by 2kn−1 for some
k ≥ 1. Let N := 2kn − 1. Furthermore we assume that every computation ends
in a configuration with the head on the rightmost tape cell while the machine is
in either of he states qa or qr.

In the following we will construct a CTL+ formula ϕM,w s.t. w ∈ L(M) iff
ϕM,w is satisfiable. Informally, an accepting computation of M on w will serve
as a model for ϕM,w.

Like Vardi and Stockmeyer [9], we encode a configuration of M as a sequence
of 2k·n − 1 states in a possible model for ϕM,w. Successive configurations of the
Turing Machine are modelled by concatenating these sequences, where we add
one dummy state with index 0 between each pair of adjacent configurations.

The underlying set of propositions is P = Q∪Σ∪{c0, . . . , ck·n−1}∪{x, z, e}.

– q ∈ Q is true in a state of the model iff the head of the Turing Machine is
on the corresponding tape cell in the corresponding configuration while the
machine is in state q. The formula h :=

∨

q∈Q q says that the machine is in
some state, i.e. the head is on that cell.

– a ∈ Σ is true iff a is the symbol on the corresponding tape cell.

– ck·n−1, . . . , c0 represent a counter in binary representation. The counter value
in a state of the model is 0 at the dummy states and the number of the
corresponding tape cell otherwise.

– x is used to denote that the corresponding configuration is accepting.

– z is used to mark the part of a tree model which corresponds to the compu-
tation. In order to be able to speak about a certain state somewhere on a
path we let every state of the encoding have a successor which carries exatly
the same amount of information except that it is labelled with ¬z. Thus,
such a state can be seen as not belonging directly to the encoding of the
computation tree but being a clone of a state in this tree.

– e indicates that the state at hand belongs to an “even” configuration, i.e.
one with an even index in a sequence C0, C1, . . . of configurations of the
computation.

For every fixed m we can write a formula χm which says that the counter value
is m in the current state, e.g.

χ0 :=

k·n−1
∧

i=0

¬ci , χ1 := c0 ∧

k·n−1
∧

i=1

¬ci and χN :=

k·n−1
∧

i=0

ci

for the dummy (m = 0), the leftmost (m = 1) and rightmost (m = N) position
in a configuration.

In order to describe M′s behaviour on w we need to express several proper-
ties. The formula ϕ0 says that there is always exactly one symbol on a tape cell,

5

and M is never in two different states at the same time.

ϕ0 := AG((¬χ0 →
∨

a∈Σ

a) ∧ (χ0 → ¬h ∧
∧

a∈Σ

¬a) ∧

∧

a,b∈Σ,b6=a

¬(a ∧ b) ∧
∧

q,q′∈Q,q 6=q′

¬(q ∧ q′))

We can say that the counter value is not changed in the transition to the next
state on a given path. This is used to clone states as indicated above. The value
of e does not change in this case.

ψrem := (e↔ Xe) ∧

k·n−1
∧

j=0

(cj ↔ Xcj)

We can also say that the counter value is increased by 1 modulo 2k·n. Then, a
switch from e to ¬e or vice versa occurs iff the counter is increased from 2k·n−1
to 0.

ψinc := ((e↔ X¬e) ∧ χN ∧ Xχ0) ∨

(e↔ Xe) ∧
k·n−1
∨

j=0

(¬cj ∧ Xcj ∧
∧

i>j

(ci ↔ Xci) ∧
∧

i<j

(ci ∧ X¬ci))

The entire computation of M forms a tree. Each state is labelled with a symbol
of Σ. Moreover, z holds on every state on the computation, and every state has
at least one successor from which on z never holds. Furthermore, the subtree
under this state reflects the labelling of its root’s predecessor which still satisfies
z. This idea is taken from Vardi and Stockmeyer’s proof [9] and used to be able
to speak about finite prefixes of infinite paths.

On all paths qa or qr is eventually reached and all following states do not
satisfy z. The counter is only increased (modulo 2k·n) in states satisfying z.

ψeq := ψrem ∧
∧

q∈Q

q ↔ Xq ∧
∧

a∈Σ

a↔ Xa

ϕ1 := AF¬z ∧
AG((z ∧ ¬qa ∧ ¬qr) → (EXz ∧ EX¬z) ∧

¬z → A(X¬z ∧ ψeq) ∧
(qa ∨ qr) → AX¬z ∧ χN) ∧

AGA((z ∧ Xz ↔ ψinc) ∧ (z ∧ X¬z ↔ ψeq))

There is at most one tape head in every configuration. (The fact that there
is at least one will be guaranteed by ϕ5 later on.) This is achieved by saying
that there is no bit ci which distinguishes two possible occurrences of an h in
one configuration. To guarantee that one speaks about the same configuration
for two such occurrences of h, we demand that the value of e never changes in

6

between.

ϕ2 := AGA(χ0 → (e→ ¬(

k·n−1
∨

i=0

eU(e ∧ h ∧ ci) ∧ eU(e ∧ h ∧ ¬ci)) ∧

¬e→ ¬(

k·n−1
∨

i=0

¬eU(¬e ∧ h ∧ ci) ∧ ¬eU(¬e ∧ h ∧ ¬ci))))

The computation is accepting. Every qa is marked with an x but no qr is. More-
over, an x occurs together with an existential state only if there is a path along
z s.t. x holds together with the first occurrence of h. For universal or moving
states all z-paths must satisfy x in their first occurrence of h.

ϕ3 := x ∧ AG((qa → x) ∧ (qr → ¬x) ∧
∧

q∈Q∃

q → (x↔ EXE((z ∧ ¬h)U(z ∧ h ∧ x))) ∧

∧

q∈Q∀∪Qm

q → (x↔ AXA(zU(z ∧ h) → Fhx)))

At the beginning, the tape contains a1 . . . an� . . .�, the input word followed by
2k·n − n blank symbols. M is in state q0 and the head is on the first symbol of
w.

ϕ4 := z ∧ e ∧ χ0 ∧

EX(z ∧ q0 ∧ a1 ∧

EX(z ∧ a2 ∧

. . . ∧

EX(z ∧ an∧

EXE((z ∧ �)U(z ∧ χ0))) . . .))

Now we have to say that two adjacent configurations comply with M’s transition
rules. In order to do so we need the following statements about a path. The
counter value is 0 exactly once before ¬z holds.

ψ1 := e→ zU(z ∧ ¬e ∧ χ0) ∧ ¬e→ zU(z ∧ e ∧ χ0) ∧

¬(zU(e ∧ χ0) ∧ zU(¬e ∧ χ0))

We need three formulas saying that the counter value in the first state not
satisfying z is the same as the value of the first state on the path, resp. increased
or decreased by 1. We explicitly forbid to increase a maximal value, resp. decrease
a minimal one, i.e. do not calculate modulo 2k·n, because these formulas are used
to describe the tape head’s moves. Note that it cannot go left at the right end
of the tape and vice-versa.

7

ψ= :=
k·n−1

∧

i=0

ci ↔ F¬zci

ψ+1 := ¬χN ∧
k·n−1

∨

j=0

(¬cj ∧ F¬zcj) ∧
∧

i>j

(ci ↔ F¬zci) ∧
∧

i<j

(ci ∧ F¬z¬ci)

ψ−1 := ¬χ1 ∧
k·n−1

∨

j=0

(cj ∧ F¬z¬cj) ∧
∧

i>j

(ci ↔ F¬zci) ∧
∧

i<j

(¬ci ∧ F¬zci)

Finally, we have to describe the machine’s transition behaviour δ. On every state
the following holds.

– If it is labelled with a q ∈ Qb then the actual symbol is replaced in every
next configuration at the same position.

– If it is not labelled with a q ∈ Qb, in particular no q at all, then the corre-
sponding state of the next configuration carries the same symbol from Σ.

– If it is labelled with a q ∈ Qm then every next or previous state to the
corresponding one in the next configuration is labelled with the machine
state that is given by the transition relation.

Note that the second and third case do not exclude each other.

ϕ5 := AG

(
∧

q∈Qb,a∈Σ

(q ∧ a →
∧

(q,a,q′,b)∈δ

E(ψ1 ∧ ψ= ∧ F¬z(q
′ ∧ b)) ∧

A(ψ1 ∧ ψ= → F¬z

∨

(q,a,q′,b)∈δ

(q′ ∧ b)))

∧
∧

a∈Σ

¬(
∨

q∈Qb

q) ∧ a → A(ψ1 ∧ ψ= → F¬za)

∧
∧

(q,a,q′,L)∈δ

q ∧ a → A(ψ1 ∧ ψ−1 → F¬zq
′)

∧
∧

(q,a,q′,R)∈δ

q ∧ a → A(ψ1 ∧ ψ+1 → F¬zq
′)

)

Altogether, the machine’s behaviour is described by the formula

ϕM,w := ϕ0 ∧ ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 ∧ ϕ5

Then, the part of a model for ϕM,w that is marked with z corresponds to a
successful computation tree of M on w. Conversely, such a tree can easily be
extended to a model for ϕM,w.

Thus, M accepts w iff there exists a successful computation tree for M on
w iff there exists a model for ϕM,w iff ϕM,w is satisfiable.

Finally, the size of ϕM,w is quadratic in |Σ| and |Q| and linear in |w| and
|δ|. ⊓⊔

Corollary 1. There is no reduction r : CTL+ → CTL s.t. for all ϕ ∈ CTL+:

– ϕ is satisfiable iff r(ϕ) is satisfiable, and

8

– |r(ϕ)| ≤ f(|ϕ|) for some f : N → N with f(n2) = o(2n).

Proof. Suppose there is a reduction from CTL+ to CTL that preserves satisfia-
bility and produces formulas of subexponential length f(n). Then this reduction
in conjunction with a satisfiability checker for CTL can be used to decide sat-
isfiability of CTL+ in asymptotically less time than O(2f(n)). As a consequence

of Theorem 1, every language in 2-EXPTIME can be decided in time O(2f(n2))
since it can be reduced to CTL+ in quadratic time, and satisfiability for CTL
can be decided in time O(2n). But according to the asymptotic restriction on f
and the Time Hierarchy Theorem, there is a language in 2-EXPTIME which is
not decidable in time O(2f(n2)). To see this note that

f(n2) = o(2n) iff f(n2) + log f(n2) = o(2n) iff 2f(n2) · f(n2) = o(22n

)

⊓⊔

References

1. M. Adler and N. Immerman. An n! lower bound on formula size. In Proc. 16th

Symp. on Logic in Computer Science, LICS’01, pages 197–208, Boston, MA, USA,
June 2001. IEEE Computer Society.

2. A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. Journal of the

ACM, 28(1):114–133, January 1981.
3. E. A. Emerson and J. Y. Halpern. Decision procedures and expressiveness in

the temporal logic of branching time. Journal of Computer and System Sciences,
30:1–24, 1985.

4. E. A. Emerson and J. Y. Halpern. “Sometimes” and “not never” revisited: On
branching versus linear time temporal logic. Journal of the ACM, 33(1):151–178,
January 1986.

5. E. A. Emerson and C. S. Jutla. The complexity of tree automata and logics of
programs. SIAM Journal on Computing, 29(1):132–158, February 2000.

6. E. A. Emerson and C.-L. Lei. Modalities for model checking: Branching time logic
strikes back. Science of Computer Programming, 8(3):275–306, 1987.

7. O. Kupferman and O. Grumberg. Buy one, get one free!!! Journal of Logic and

Computation, 6(4):523–539, August 1996.
8. F. Laroussinie, N. Markey, and P. Schnoebelen. Model checking CTL

+ and FCTL

is hard. In Proc. 4th Conf. Foundations of Software Science and Computation

Structures, FOSSACS’01, volume 2030 of LNCS, pages 318–331, Genova, Italy,
April 2001. Springer.

9. M. Y. Vardi and L. Stockmeyer. Improved upper and lower bounds for modal
logics of programs. In Proc. 17th Symp. on Theory of Computing, STOC’85, pages
240–251, Baltimore, USA, May 1985. ACM.

10. T. Wilke. CTL+ is exponentially more succinct than CTL. In Proc. 19th

Conf. on Foundations of Software Technology and Theoretical Computer Science,

FSTTCS’99, volume 1738 of LNCS, pages 110–121. Springer, 1999.

9

