On Sharply Bounded Length Induction

Jan Johannsen

Universität Erlangen-Nürnberg, Germany email: johannsen@informatik.uni-erlangen.de

Abstract. We construct models of the theory $L_2^0 := BASIC + \Sigma_0^b$ -LIND: one where the predecessor function is not total and one not satisfying Σ_0^b -PIND, showing that L_2^0 is strictly weaker that S_2^0 . The construction also shows that S_2^0 is not $\forall \Sigma_0^b$ -axiomatizable.

Introduction

First we recall the definitions of the theories S_2^i and T_2^i of Bounded Arithmetic introduced by S. Buss [1]: The language of these theories is the language of Peano Arithmetic extended by symbols for the functions $\lfloor \frac{1}{2}x \rfloor$, the binary length $|x| := \lfloor \log_2(x+1) \rfloor$ and $x \# y := 2^{|x| \cdot |y|}$. The presence of # allows to express polynomial length bounds: if $|x| \le p(|y|)$ for some polynomial p, then there is a term t containing # such that $x \leq t(y)$.

A quantifier of the form $\forall x \leq t$, $\exists x \leq t$ with x not occurring in t is called a bounded quantifier. Furthermore, a quantifier of the form $\forall x \leq |t|$, $\exists x \leq |t|$ is called *sharply bounded*. A formula is called sharply bounded if all quantifiers in it are sharply bounded.

The class of sharply bounded formulae is denoted Σ_0^b or Π_0^b . For $i \in \mathbb{N}$, let Σ_{i+1}^b (resp. Π_{i+1}^b) be the least class containing Π_i^b (resp. Σ_i^b) and closed under conjunction, disjunction, sharply bounded quantification and bounded existential (resp. universal) quantification. In the standard model, Σ_i^b -formulae describe exactly the sets in Σ_i^P , the *i*th level of the Polynomial Time Hierarchy, and likewise for Π_i^b -formulae and Π_i^P , for $i \ge 1$.

The theory T_2^i is defined by a finite set *BASIC* of quantifier-free axioms specifying the interpretation of the language, plus the induction scheme for Σ_i^b . formulae (Σ_i^b -IND). S_2^i is defined by the BASIC axioms plus the scheme of polynomial induction

$$\varphi(0) \land \forall x \left(\varphi(\lfloor \frac{1}{2}x \rfloor) \to \varphi(x) \right) \to \forall x \varphi(x)$$

for every Σ_i^b -formula $\varphi(x)$ (Σ_i^b -PIND). By the main result of [1], a function f with Σ_i^b -graph is provably total in S_2^i iff $f \in FP^{\Sigma_{i-1}^P}$, for $i \ge 1$. Now let L_2^i denote the theory given by the *BASIC* axioms and the scheme

of length induction

$$\varphi(0) \land \forall x \, (\varphi(x) \to \varphi(Sx)) \to \forall x \varphi(|x|)$$

for each Σ_i^b -formula $\varphi(x)$ (Σ_i^b -LIND). Then for $i \ge 1$, we have $L_2^i = S_2^i$ (see [3]) for a proof).

The proof of the inclusion $L_2^i \subseteq S_2^i$ is fairly easy and also works for i = 0: to prove *LIND* for a formula $\varphi(x)$, apply *PIND* to $\varphi(|x|)$. The proof of the opposite inclusion rests mainly on the definability of certain functions in L_2^1 , and thus can only be applied to the case i = 0 if the language is extended by symbols for these functions and axioms on them.

Therefore, in case i = 0, have $L_2^0 \subseteq T_2^0$, which is trivial, and $L_2^0 \subseteq S_2^0$. Furthermore the first inclusion is proper since Takeuti [6] showed that the following theorem of T_2^0

$$\forall x \ (x = 0 \lor \exists y \ x = Sy)$$

is unprovable in S_2^0 and hence in L_2^0 . This shows that the predecessor and hence the modified subtraction function \div cannot be provably total in either of these theories.

Note that $L_2^0 = S_2^0$ would imply that S_2^0 is (properly) contained in T_2^0 , but it is not ruled out yet that these latter two theories are incomparable w.r.t. inclusion.

As the main result of this paper, we shall show below that $L_2^0 \not\subseteq S_2^0$. The question about the relationship between S_2^0 and T_2^0 remains unresolved. We also show that S_2^0 is not equivalent to any set of $\forall \Sigma_0^b$ -axioms, i.e. axioms that are universal closures of sharply bounded formulae.

A Model-Theoretic Property of Σ_0^b -formulae

A property of sharply bounded formulae that we shall need is their absoluteness w.r.t. a certain class of extensions of models:

Definition. Let M and N be models of BASIC, M a substructure of N. Then we say M is *length-initial* in N, written $M \subseteq_{\ell} N$, if for all $a \in M$ and $b \in N$ with b < |a| already $b \in M$ holds.

In the following, barred letters will always denote tuples of variables or elements whose length is either irrelevant or clear from the context.

Proposition 1. If $M \subseteq_{\ell} N$, then sharply bounded formulae are absolute between M and N, i.e. for every Σ_0^b -formula $\varphi(\bar{x})$ and $\bar{a} \in M$

$$M \models \varphi(\bar{a}) \text{ iff } N \models \varphi(\bar{a}) .$$

Proof. This is proved easily by induction on the complexity of the formula $\varphi(\bar{x})$. The crucial case is $\varphi(\bar{x}) \equiv \forall y \leq |t(\bar{x})| \ \theta(\bar{x}, y)$, where we have

$$\begin{split} M &\models \forall y \le |t(\bar{a})| \ \theta(\bar{a}, y) \\ \leftrightarrow \text{ for all } b \in M \text{ with } b \le |t(\bar{a})| \ N \models \theta(\bar{a}, b) \\ \leftrightarrow N \models \forall y \le |t(\bar{a})| \ \theta(\bar{a}, y) \ . \end{split}$$

The first equivalence holds by the induction hypothesis, and the second one by $M \subseteq_{\ell} N$.

Now over the BASIC axioms, Σ_0^b -LIND is equivalent to the following scheme

$$\forall a \ [\varphi(0) \land \forall x < |a| \ (\varphi(x) \to \varphi(Sx)) \to \varphi(|a|)]$$

for every sharply bounded formula $\varphi(x)$. Therefore L_2^0 is $\forall \Sigma_0^b$ -axiomatizable, and hence from Proposition 1 we get

Corollary 2. If $N \models L_2^0$ and $M \subseteq_{\ell} N$, then $M \models L_2^0$.

A model of L_2^0 with a partial predecessor function

We already know from Takeuti's result for S_2^0 mentioned above and the inclusion $L_2^0 \subseteq S_2^0$, that the existence of predecessors is independent from L_2^0 . We shall now construct a model witnessing this independence.

Let $M \models S_2^1$. An element $a \in M$ is called *small*, if $a \leq |b|$ for some $b \in M$, and *large* otherwise. Define

$$M_0 := \{ a \in M ; a \text{ is small} \} \cup \{ 1 \# a ; a \in M \}.$$

Hence M_0 contains all small elements of M, plus a prototypical large element of each length. Let \hat{M} be the closure of M_0 under addition and multiplication. We imagine \hat{M} being built in stages: for $i \in \mathbb{N}$ we define

$$M_{i+1} := \{ a+b ; a, b \in M_i \} \cup \{ a \cdot b ; a, b \in M_i \}$$

and $\hat{M} := \bigcup_{i \in \mathbb{N}} M_i$.

Proposition 3. \hat{M} is closed under $|.|, \lfloor \frac{1}{2} \rfloor$ and #.

Proof. Closure under |.| is clear since all small elements of M are in M_0 and hence in \hat{M} . Closure under # is also easy: for every $a, b \in M$, a#b is equal to $1\#\lfloor \frac{1}{2}a\#b \rfloor$, since both are powers of two of the same length, and thus $a\#b \in M_0$.

Now for closure under $\lfloor \frac{1}{2} \rfloor$: We first show that M_0 is closed under $\lfloor \frac{1}{2} \rfloor$. This follows from the fact that $\lfloor \frac{1}{2}a \rfloor$ is small iff a is small, and $\lfloor \frac{1}{2}(1\#a) \rfloor = 1\#\lfloor \frac{1}{2}a \rfloor$.

Now suppose that for every $a \in M_i \lfloor \frac{1}{2}a \rfloor \in \hat{M}$, and let $b \in M_{i+1}$. Then there are $b_1, b_2 \in M_i$ such that $b = b_1 + b_2$ or $b = b_1 \cdot b_2$. Now we can calculate

$$\lfloor \frac{1}{2}(b_1 + b_2) \rfloor = \begin{cases} \lfloor \frac{1}{2}b_1 \rfloor + \lfloor \frac{1}{2}b_2 \rfloor & \text{if } b_1 \cdot b_2 \text{ is even} \\ \lfloor \frac{1}{2}b_1 \rfloor + \lfloor \frac{1}{2}b_2 \rfloor + 1 \text{ else} \end{cases}$$
$$\lfloor \frac{1}{2}(b_1 \cdot b_2) \rfloor = \begin{cases} \lfloor \frac{1}{2}b_1 \rfloor \cdot b_2 & \text{if } b_1 \text{ is even} \\ \lfloor \frac{1}{2}b_1 \rfloor \cdot b_2 + \lfloor \frac{1}{2}b_2 \rfloor \text{ else} \end{cases}$$

and see that in either case $\lfloor \frac{1}{2}b \rfloor \in \hat{M}$.

In particular, \hat{M} is a substructure of M, and from the definition we see that $\hat{M} \subseteq_{\ell} M$, since \hat{M} contains all small elements of M. Therefore $\hat{M} \models L_2^0$.

Lemma 4. If there is $b \in \hat{M}$ with Sb = 1 # a, then a is bounded by $t(\bar{c})$ for some term $t(\bar{x})$ and some small $\bar{c} \in M$.

Proof. Recall from [1] that in S_2^1 the function Bit(x, i) giving the value of the i^{th} bit in the binary expansion of x and the operation of *length bounded counting* can be defined. Hence we can talk about the number of bits set in an element of M.

We shall show below that for every $b \in \hat{M}$, the number of bits set is very small, i.e. $\sharp i < |b| (Bit(b, i) = 1) \le p(||\bar{c}||)$ for some polynomial p and $\bar{c} \in M$. On the other hand, if Sb = 1#a, then $\sharp i < |b| (Bit(b, i) = 1) = |a|$, so we get $|a| \le p(||\bar{c}||)$, and thus $a \le t(|\bar{c}|)$ for some term $t(\bar{x})$.

We prove the above claim by induction, using the above defined M_i . If $b \in M_0$, then either b is small, or b = 1 # d for some $d \in M$. In the first case, $|b| \leq ||c||$, and therefore $\sharp i < |b| (Bit(b, i) = 1) \leq |b| \leq ||c||$ for some $c \in M$. In the second case, $\sharp i < |b| (Bit(b, i) = 1) = 1$.

Now let $b \in M_{i+1}$, and suppose the claim holds for all elements in M_i . Then there are $b_1, b_2 \in M_i$ such that $b = b_1 + b_2$ or $b = b_1 \cdot b_2$. Let

$$\sharp i < |b_j| (Bit(b_j, i) = 1) \le p_j(||\bar{c}_j||)$$

for j = 1, 2. Then if $b = b_1 \circ b_2$,

$$\sharp i < |b| (Bit(b, i) = 1) \le p_1(||\bar{c}_1||) \circ p_2(||\bar{c}_2||)$$

for $\circ \in \{+, \cdot\}$. Thus the claim follows.

Recall the axioms Ω_2 stating that the function $x \#_3 y := 2^{|x| \# |y|}$ is total, which can be expressed in the language of S_2^1 as $\forall x \exists y |x| \# |x| = |y|$, and exp saying that exponentiation is total and hence there are no large elements. The consistency of the theory $S_2^1 + \Omega_2 + \neg exp$ follows from Parikhs Theorem, see e.g. [5]. Lemma 4 then yields

Theorem 5. If $M \models S_2^1 + \Omega_2 + \neg exp$, then $\hat{M} \models L_2^0 + \exists x \ (x \neq 0 \land \forall y \ Sy \neq x)$.

Proof. Since $M \models \Omega_2$, the small numbers are closed under #, hence if there is $b \in \hat{M}$ with Sb = 1 # a, then Lemma 4 shows that a is small. But since $M \models \neg exp$, there are large elements in M and hence in \hat{M} .

The independence of Σ_0^b -PIND

Let again $M \models S_2^1 + \Omega_2 + \neg exp$. From this model M, we construct a model $\tilde{M} \models L_2^0$ that does not satisfy S_2^0 .

For $x \in M$ and $n \in \mathbb{N}$ we define $x^{\#n}$ inductively by $x^{\#0} := 1, x^{\#1} := x$ and $x^{\#(n+1)} := x^{\#n} \# x$ for $n \ge 1$. Choose a large $a \in M$. Then we define

$$\tilde{M} := \left\{ b \in M ; b^{\# n} < a \text{ for all } n \in \mathbb{N} \right\} \cup \left\{ b \in M ; b > a^{\# n} \text{ for all } n \in \mathbb{N} \right\}$$

We call the first set in the union the *lower part* of \tilde{M} and the second set in the union the *upper part*. Note that the upper part is nonempty since $M \models \Omega_2$, for there must be an element b with |b| = |a| # |a|. But then $b > a^{\#n}$ for every n since $b \le a^{\#n}$ implies that |b| is bounded by a polynomial in |a|.

Proposition 6. \tilde{M} is closed under $|.|, \lfloor \frac{1}{2} \rfloor, +, \cdot$ and #.

Proof. Since $M \models \Omega_2$, all small elements of M are in the lower part, since otherwise a would be small. Hence \tilde{M} is closed under |.|.

If b is in the lower part, then of course $\lfloor \frac{1}{2}b \rfloor$ is in the lower part. On the other hand, the upper part is closed under $\lfloor \frac{1}{2} \rfloor$ since if $\lfloor \frac{1}{2}b \rfloor \leq a^{\#n}$, then $b \leq a^{\#(n+1)}$.

If at least one of b, c is in the upper part, then $b \circ c$ is in the upper part, for $o \in \{+, \cdot, \#\}$.

Finally, the lower part is closed under #, and thus under + and \cdot . To see this, let b and c be in the lower part. Then for every $n \in \mathbb{N}$, $(b\#c)^{\#n} \leq \max(b,c)^{\#2n} < a$, hence b#c is in the lower part.

So \tilde{M} is a substructure of M, and moreover $\tilde{M} \subseteq_{\ell} M$ since all small elements of M are in \tilde{M} , and thus $\tilde{M} \models L_2^0$. We show that there is a small element in \tilde{M} that is not the length of any other element of \tilde{M} .

Proposition 7.
$$\tilde{M} \models L_2^0 + \exists x, y \ (x < |y| \land \forall z \le y \ |z| \ne x)$$

Proof. We shall show the following: If b is in the lower part of \tilde{M} , then |b| < |a|, and if b is in the upper part of \tilde{M} , then |b| > |a|. Hence the element $|a| \in \tilde{M}$ is small, but there is no $b \in \tilde{M}$ with |b| = |a|.

So suppose $|b| \ge |a|$ for some b in the lower part. Then in particular b#b < a, hence $|b\#b| \le |a|$. But $|b\#b| = |b|^2 + 1 \le |a| \le |b|$ leads to a contradiction.

Dually, suppose $|b| \le |a|$ for some b in the upper part. Then a # a < b, hence $|a \# a| = |a|^2 + 1 \le |b| \le |a|$, which is likewise impossible.

On the other hand, S_2^0 proves that every small element is the length of some other element.

Proposition 8. $S_2^0 \vdash \forall x, y \ (x \le |y| \to \exists z \le y \ |z| = x).$

Proof. Consider the following case of Σ_0^b -PIND:

$$|0| < Sa \land \forall x \left(\left| \left\lfloor \frac{1}{2} x \right\rfloor \right| < Sa \to |x| < Sa \right) \to |b| < Sa$$

By taking the contrapositive of it and using the fact that $Sa \leq 0$ is refutable, we obtain

$$a < |b| \to \exists x \left(\left| \left\lfloor \frac{1}{2} x \right\rfloor \right| \le a \land S \left| \left\lfloor \frac{1}{2} x \right\rfloor \right| > a \right)$$

and hence $a < |b| \to \exists x (|\lfloor \frac{1}{2}x \rfloor| = a)$, which implies $a < |b| \to \exists z |z| = a$. But if |z| = a < |b|, then z < b, so the existential quantifier can be bounded by b.

On the other hand, $a = |b| \rightarrow \exists z \leq b \ |z| = a$ is trivial, and combining these, we get

$$a \le |b| \to \exists z \le b \ |z| = a$$

as required.

From Propositions 7 and 8 we immediately obtain our main result:

Theorem 9. $L_2^0 \not\vdash \Sigma_0^b$ -PIND, hence $L_2^0 \subsetneqq S_2^0$.

This shows that the schemes of polynomial induction and length induction are not necessarily equivalent in all contexts; their equivalence depends on the class of formula they can be applied to and the surrounding theory. Furthermore the proof shows

Corollary 10. S_2^0 is not axiomatizable by a set of $\forall \Sigma_0^b$ -sentences.

Proof. By the above results \tilde{M} cannot be a model of S_2^0 . If S_2^0 were $\forall \Sigma_0^b$ -axiomatizable, $M \models S_2^0$ and $\tilde{M} \subseteq_{\ell} M$ would imply $\tilde{M} \models S_2^0$. \Box

Acknowledgements: The present paper was somehow inspired by work of Fernando Ferreira [4]. Sam Buss [2] used a model construction remotely similar to ours for a different purpose.

References

- 1. S. R. Buss. Bounded Arithmetic. Bibliopolis, Napoli, 1986.
- S. R. Buss. A note on bootstrapping intuitionistic bounded arithmetic. In P. Aczel, H. Simmons, and S. S. Wainer, editors, *Proof Theory*, pages 149–169. Cambridge University Press, 1992.
- S. R. Buss and A. Ignjatović. Unprovability of consistency statements in fragments of bounded arithmetic. Annals of Pure and Applied Logic, 74:221–244, 1995.
- 4. F. Ferreira. Some notes on subword quantification and induction thereof. Typeset Manuscript.
- P. Hájek and P. Pudlák. Metamathematics of First-Order Arithmetic. Springer Verlag, Berlin, 1993.
- 6. G. Takeuti. Sharply bounded arithmetic and the function $a \div 1$. In Logic and Computation, volume 106 of Contemporary Mathematics, pages 281–288. American Mathematical Society, Providence, 1990.

This article was processed using the LATEX macro package with LLNCS style