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Abstract. We construct models of the theory L
0
2 := BASIC + Σ

b

0-

LIND: one where the predecessor function is not total and one not

satisfying Σ
b

0-PIND, showing that L
0
2 is strictly weaker that S

0
2 . The

construction also shows that S
0
2 is not ∀Σ

b

0-axiomatizable.

Introduction

First we recall the definitions of the theories Si
2 and T i

2 of Bounded Arithmetic
introduced by S. Buss [1]: The language of these theories is the language of
Peano Arithmetic extended by symbols for the functions ⌊ 1

2x⌋, the binary length

|x| := ⌈log2(x + 1)⌉ and x#y := 2|x|·|y|. The presence of # allows to express
polynomial length bounds: if |x| ≤ p(|y|) for some polynomial p, then there is a
term t containing # such that x ≤ t(y).

A quantifier of the form ∀x ≤ t , ∃x ≤ t with x not occurring in t is called
a bounded quantifier. Furthermore, a quantifier of the form ∀x≤ |t| , ∃x≤ |t| is
called sharply bounded. A formula is called sharply bounded if all quantifiers in
it are sharply bounded.

The class of sharply bounded formulae is denoted Σb
0 or Πb

0 . For i ∈ N,
let Σb

i+1 (resp. Πb
i+1) be the least class containing Πb

i (resp. Σb
i ) and closed

under conjunction, disjunction, sharply bounded quantification and bounded
existential (resp. universal) quantification. In the standard model, Σb

i -formulae
describe exactly the sets in ΣP

i , the ith level of the Polynomial Time Hierarchy,
and likewise for Πb

i -formulae and ΠP
i , for i ≥ 1.

The theory T i
2 is defined by a finite set BASIC of quantifier-free axioms

specifying the interpretation of the language, plus the induction scheme for Σb
i -

formulae (Σb
i -IND). Si

2 is defined by the BASIC axioms plus the scheme of
polynomial induction

ϕ(0) ∧ ∀x (ϕ(⌊
1

2
x⌋) → ϕ(x) ) → ∀xϕ(x)

for every Σb
i -formula ϕ(x) (Σb

i -PIND). By the main result of [1], a function f

with Σb
i -graph is provably total in Si

2 iff f ∈ FPΣP

i−1 , for i ≥ 1.
Now let Li

2 denote the theory given by the BASIC axioms and the scheme
of length induction

ϕ(0) ∧ ∀x (ϕ(x) → ϕ(Sx) ) → ∀xϕ(|x|)

for each Σb
i -formula ϕ(x) (Σb

i -LIND). Then for i ≥ 1, we have Li
2 = Si

2 (see [3]
for a proof).



The proof of the inclusion Li
2 ⊆ Si

2 is fairly easy and also works for i = 0:
to prove LIND for a formula ϕ(x), apply PIND to ϕ(|x|). The proof of the
opposite inclusion rests mainly on the definability of certain functions in L1

2, and
thus can only be applied to the case i = 0 if the language is extended by symbols
for these functions and axioms on them.

Therefore, in case i = 0, have L0
2 ⊆ T 0

2 , which is trivial, and L0
2 ⊆ S0

2 . Fur-
thermore the first inclusion is proper since Takeuti [6] showed that the following
theorem of T 0

2

∀x (x = 0 ∨ ∃y x = Sy)

is unprovable in S0
2 and hence in L0

2. This shows that the predecessor and hence
the modified subtraction function . cannot be provably total in either of these
theories.

Note that L0
2 = S0

2 would imply that S0
2 is (properly) contained in T 0

2 , but
it is not ruled out yet that these latter two theories are incomparable w.r.t.
inclusion.

As the main result of this paper, we shall show below that L0
2

⊂
6= S0

2 . The
question about the relationship between S0

2 and T 0
2 remains unresolved. We also

show that S0
2 is not equivalent to any set of ∀Σb

0-axioms, i.e. axioms that are
universal closures of sharply bounded formulae.

A Model-Theoretic Property of Σ
b

0
-formulae

A property of sharply bounded formulae that we shall need is their absoluteness
w.r.t. a certain class of extensions of models:

Definition. Let M and N be models of BASIC, M a substructure of N . Then
we say M is length-initial in N , written M ⊆ℓ N , if for all a ∈ M and b ∈ N

with b < |a| already b ∈ M holds.

In the following, barred letters will always denote tuples of variables or elements
whose length is either irrelevant or clear from the context.

Proposition1. If M ⊆ℓ N , then sharply bounded formulae are absolute between

M and N , i.e. for every Σb
0-formula ϕ(x̄) and ā ∈ M

M |= ϕ(ā) iff N |= ϕ(ā) .

Proof. This is proved easily by induction on the complexity of the formula ϕ(x̄).
The crucial case is ϕ(x̄) ≡ ∀y≤|t(x̄)| θ(x̄, y), where we have

M |= ∀y≤|t(ā)| θ(ā, y)

↔ for all b ∈ M with b ≤ |t(ā)| N |= θ(ā, b)

↔ N |= ∀y≤|t(ā)| θ(ā, y) .

The first equivalence holds by the induction hypothesis, and the second one by
M ⊆ℓ N . ⊓⊔



Now over the BASIC axioms, Σb
0-LIND is equivalent to the following

scheme
∀a [ϕ(0) ∧ ∀x< |a| (ϕ(x) → ϕ(Sx)) → ϕ(|a|)] ,

for every sharply bounded formula ϕ(x). Therefore L0
2 is ∀Σb

0-axiomatizable, and
hence from Proposition 1 we get

Corollary 2. If N |= L0
2 and M ⊆ℓ N , then M |= L0

2.

A model of L
0

2
with a partial predecessor function

We already know from Takeuti’s result for S0
2 mentioned above and the inclusion

L0
2 ⊆ S0

2 , that the existence of predecessors is independent from L0
2. We shall

now construct a model witnessing this independence.
Let M |= S1

2 . An element a ∈ M is called small , if a ≤ |b| for some b ∈ M ,
and large otherwise. Define

M0 := { a ∈ M ; a is small } ∪ { 1#a ; a ∈ M } .

Hence M0 contains all small elements of M , plus a prototypical large element of
each length. Let M̂ be the closure of M0 under addition and multiplication. We
imagine M̂ being built in stages: for i ∈ N we define

Mi+1 := { a + b ; a, b ∈ Mi } ∪ { a · b ; a, b ∈ Mi }

and M̂ :=
⋃

i∈N
Mi.

Proposition 3. M̂ is closed under |.|, ⌊ 1
2⌋ and #.

Proof. Closure under |.| is clear since all small elements of M are in M0 and
hence in M̂ . Closure under # is also easy: for every a, b ∈ M , a#b is equal to
1#⌊ 1

2a#b⌋, since both are powers of two of the same length, and thus a#b ∈ M0.
Now for closure under ⌊ 1

2⌋: We first show that M0 is closed under ⌊ 1
2⌋. This

follows from the fact that ⌊ 1
2a⌋ is small iff a is small, and ⌊ 1

2 (1#a)⌋ = 1#⌊ 1
2a⌋.

Now suppose that for every a ∈ Mi ⌊
1
2a⌋ ∈ M̂ , and let b ∈ Mi+1. Then there

are b1, b2 ∈ Mi such that b = b1 + b2 or b = b1 · b2. Now we can calculate

⌊
1

2
(b1 + b2)⌋ =

{

⌊ 1
2b1⌋ + ⌊ 1

2b2⌋ if b1 · b2 is even
⌊ 1

2b1⌋ + ⌊ 1
2b2⌋ + 1 else

⌊
1

2
(b1 · b2)⌋ =

{

⌊ 1
2b1⌋ · b2 if b1 is even

⌊ 1
2b1⌋ · b2 + ⌊ 1

2b2⌋ else

and see that in either case ⌊ 1
2b⌋ ∈ M̂ . ⊓⊔

In particular, M̂ is a substructure of M , and from the definition we see that
M̂ ⊆ℓ M , since M̂ contains all small elements of M . Therefore M̂ |= L0

2.

Lemma4. If there is b ∈ M̂ with Sb = 1#a, then a is bounded by t(c̄) for some

term t(x̄) and some small c̄ ∈ M .



Proof. Recall from [1] that in S1
2 the function Bit(x, i) giving the value of the

ith bit in the binary expansion of x and the operation of length bounded counting

can be defined. Hence we can talk about the number of bits set in an element of
M .

We shall show below that for every b ∈ M̂ , the number of bits set is very
small, i.e. ♯i < |b| (Bit(b, i) = 1) ≤ p(||c̄||) for some polynomial p and c̄ ∈ M .
On the other hand, if Sb = 1#a, then ♯i < |b| (Bit(b, i) = 1) = |a|, so we get
|a| ≤ p(||c̄||), and thus a ≤ t(|c̄|) for some term t(x̄).

We prove the above claim by induction, using the above defined Mi. If b ∈ M0,
then either b is small, or b = 1#d for some d ∈ M . In the first case, |b| ≤ ||c||,
and therefore ♯i< |b| (Bit(b, i) = 1) ≤ |b| ≤ ||c|| for some c ∈ M . In the second
case, ♯i< |b| (Bit(b, i) = 1) = 1.

Now let b ∈ Mi+1, and suppose the claim holds for all elements in Mi. Then
there are b1, b2 ∈ Mi such that b = b1 + b2 or b = b1 · b2. Let

♯i< |bj | (Bit(bj , i) = 1) ≤ pj(||c̄j ||)

for j = 1, 2. Then if b = b1 ◦ b2,

♯i< |b| (Bit(b, i) = 1) ≤ p1(||c̄1||) ◦ p2(||c̄2||)

for ◦ ∈ {+, ·}. Thus the claim follows. ⊓⊔

Recall the axioms Ω2 stating that the function x#3 y := 2|x|#|y| is total, which
can be expressed in the language of S1

2 as ∀x∃y |x|#|x| = |y|, and exp saying that
exponentiation is total and hence there are no large elements. The consistency
of the theory S1

2 +Ω2 +¬exp follows from Parikhs Theorem, see e.g. [5]. Lemma
4 then yields

Theorem5. If M |= S1
2 + Ω2 + ¬exp, then M̂ |= L0

2 + ∃x (x 6= 0 ∧ ∀y Sy 6= x).

Proof. Since M |= Ω2, the small numbers are closed under #, hence if there
is b ∈ M̂ with Sb = 1#a, then Lemma 4 shows that a is small. But since
M |= ¬exp, there are large elements in M and hence in M̂ . ⊓⊔

The independence of Σ
b

0
-PIND

Let again M |= S1
2 + Ω2 + ¬exp. From this model M , we construct a model

M̃ |= L0
2 that does not satisfy S0

2 .
For x ∈ M and n ∈ N we define x#n inductively by x#0 := 1, x#1 := x and

x#(n+1) := x#n#x for n ≥ 1. Choose a large a ∈ M . Then we define

M̃ :=
{

b ∈ M ; b#n < a for all n ∈ N
}

∪
{

b ∈ M ; b > a#n for all n ∈ N
}

We call the first set in the union the lower part of M̃ and the second set in the
union the upper part . Note that the upper part is nonempty since M |= Ω2, for
there must be an element b with |b| = |a|#|a|. But then b > a#n for every n

since b ≤ a#n implies that |b| is bounded by a polynomial in |a|.



Proposition 6. M̃ is closed under |.|, ⌊ 1
2⌋, +, · and #.

Proof. Since M |= Ω2, all small elements of M are in the lower part, since
otherwise a would be small. Hence M̃ is closed under |.|.

If b is in the lower part, then of course ⌊ 1
2b⌋ is in the lower part. On the other

hand, the upper part is closed under ⌊ 1
2⌋ since if ⌊ 1

2b⌋ ≤ a#n, then b ≤ a#(n+1).
If at least one of b, c is in the upper part, then b ◦ c is in the upper part, for

◦ ∈ {+, ·, #}.
Finally, the lower part is closed under #, and thus under + and ·. To see this,

let b and c be in the lower part. Then for every n ∈ N, (b#c)#n ≤ max(b, c)#2n <

a, hence b#c is in the lower part. ⊓⊔

So M̃ is a substructure of M , and moreover M̃ ⊆ℓ M since all small elements
of M are in M̃ , and thus M̃ |= L0

2. We show that there is a small element in M̃

that is not the length of any other element of M̃ .

Proposition 7. M̃ |= L0
2 + ∃x, y (x < |y| ∧ ∀z≤y |z| 6= x).

Proof. We shall show the following: If b is in the lower part of M̃ , then |b| < |a|,
and if b is in the upper part of M̃ , then |b| > |a|. Hence the element |a| ∈ M̃ is
small, but there is no b ∈ M̃ with |b| = |a|.

So suppose |b| ≥ |a| for some b in the lower part. Then in particular b#b < a,
hence |b#b| ≤ |a|. But |b#b| = |b|2 + 1 ≤ |a| ≤ |b| leads to a contradiction.

Dually, suppose |b| ≤ |a| for some b in the upper part. Then a#a < b, hence
|a#a| = |a|2 + 1 ≤ |b| ≤ |a|, which is likewise impossible. ⊓⊔

On the other hand, S0
2 proves that every small element is the length of some

other element.

Proposition 8. S0
2 ⊢ ∀x, y (x ≤ |y| → ∃z≤y |z| = x).

Proof. Consider the following case of Σb
0-PIND:

|0| < Sa ∧ ∀x (|⌊
1

2
x⌋| < Sa → |x| < Sa) → |b| < Sa

By taking the contrapositive of it and using the fact that Sa ≤ 0 is refutable,
we obtain

a < |b| → ∃x (|⌊
1

2
x⌋| ≤ a ∧ S|⌊

1

2
x⌋| > a)

and hence a < |b| → ∃x (|⌊ 1
2x⌋| = a), which implies a < |b| → ∃z |z| = a. But if

|z| = a < |b|, then z < b, so the existential quantifier can be bounded by b.
On the other hand, a = |b| → ∃z ≤ b |z| = a is trivial, and combining these,

we get
a ≤ |b| → ∃z ≤ b |z| = a

as required. ⊓⊔

From Propositions 7 and 8 we immediately obtain our main result:



Theorem9. L0
2 6⊢ Σb

0-PIND, hence L0
2

⊂
6= S0

2 .

This shows that the schemes of polynomial induction and length induction are
not necessarily equivalent in all contexts; their equivalence depends on the class
of formula they can be applied to and the surrounding theory. Furthermore the
proof shows

Corollary 10. S0
2 is not axiomatizable by a set of ∀Σb

0-sentences.

Proof. By the above results M̃ cannot be a model of S0
2 . If S0

2 were ∀Σb
0-

axiomatizable, M |= S0
2 and M̃ ⊆ℓ M would imply M̃ |= S0

2 . ⊓⊔
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