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Abstract

An exponential lower bound for the size of tree-like Cutting Planes refutations of a certain
family of CNF formulas with polynomial size resolution refutations is proved. This implies
an exponential separation between the tree-like versions and the dag-like versions of resolution
and Cutting Planes. In both cases only superpolynomial separations were known [29, 18, 8]. In
order to prove these separations, the lower bounds on the depth of monotone circuits of Raz
and McKenzie in [25] are extended to monotone real circuits.

An exponential separation is also proved between tree-like resolution and several refinements
of resolution: negative resolution and regular resolution. Actually this last separation also
provides a separation between tree-like resolution and ordered resolution, thus the corresponding
superpolynomial separation of [29] is extended.

Finally, an exponential separation between ordered resolution and unrestricted resolution
(also negative resolution) is proved. Only a superpolynomial separation between ordered and
unrestricted resolution was previously known [13].

MSC Classification: 03F20, 68Q17, 68T15

1 Introduction

The motivation for research on the proof length of propositional proof systems is double. First, by
the work of Cook and Reckhow [10] we know that the claim that for every propositional proof system
there is a class of tautologies that have no polynomial-size proofs is equivalent to NP 6= co-NP .
This connection explains the interest in developing combinatorial techniques to prove lower bounds
for proof systems. The second motivation comes from the interest in studying efficiency issues
in Automated Theorem Proving. The question is, which proof systems have efficient algorithms
to find proofs. Actually, the proof system most widely used for implementations is resolution or
refinements of resolution. Our work is relevant to both motivations. On one hand, all the separation
results of this paper improve previously known superpolynomial separations to exponential. On the
other hand, these exponential separations harden the known results showing inefficiency of several
widely used strategies for finding proofs, especially for the resolution system.
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Haken [16] was the first to prove exponential lower bounds for unrestricted resolution. He
showed that the Pigeonhole Principle requires exponential-size resolution refutations. Urquhart
[28] found another class of tautologies with the same property. Chvátal and Szemerédi [7] showed
that in some sense, almost all classes of tautologies require exponential size resolution proofs (see
[2, 3] for simplified proofs of these results). These exponential lower bounds are bad news for
Automated Theorem Proving, since they mean that often the time used in finding proofs will be
exponentially long in the size of the tautology, just because the shortest proofs are exponentially
long in the size of the tautology.

Many strategies for finding resolution proofs are described in the literature, see e.g. Schöning’s
textbook [27]. One commonly used type of strategy is to reduce the search space by defining
restricted versions of resolution that are still complete. Such restricted forms are commonly re-
ferred to as resolution refinements. One particularly important resolution refinement is tree-like
resolution. Its importance stems from the close relationship between the complexity of tree-like
resolution proofs and the runtime of a certain class of satisfiability testing algorithms, the so-called
DLL Algorithms (cf. [24, 1]). We prove an exponential separation between tree-like resolution and
unrestricted resolution (Corollary 20), thus showing that finding tree-like resolution proofs is not
an efficient strategy for finding resolution proofs. Until now only superpolynomial separations were
known [29, 8].

We also consider three more of the most commonly used resolution refinements: negative res-
olution, regular resolution and ordered resolution. We show an exponential separation between
tree-like resolution and each one of the above restrictions (Corollary 20 for negative resolution and
Corollary 23 for both regular and ordered resolution).

Goerdt [14, 13, 15] gave several superpolynomial separations between unrestricted resolution and
some refinements of resolution, in particular he gave a superpolynomial separation between ordered
resolution and unrestricted resolution. In this paper we consider the case of ordered resolution
and we improve his separation to exponential. We prove that a certain CNF formula requires
exponential size ordered resolution refutations, but can be refuted with a polynomial size negative
resolution proof (Corollary 29), thus in particular showing that unrestricted resolution can have an
exponential speed-up over ordered resolution.

The Cutting Planes proof system, CP from now on, is a refutation system based on manipulating
integer linear inequalities. Exponential lower bounds for the size of CP refutations have already
been proven. Impagliazzo et al. [17] proved exponential lower bounds for tree-like CP . Bonet et al.
[6] proved a lower bound for the subsystem CP ∗, where the coefficients appearing in the inequalities
are polynomially bounded in the size of the formula being refuted. This is a very important result
because all known CP refutations fulfill this property. Finally, Pudlák [23] and Cook and Haken [9]
gave general circuit complexity results from which exponential lower bounds for CP follow. To this
day it is still unknown whether CP is more powerful than CP ∗, i.e., whether it produces shorter
proofs or not.

Since there is an exponential speed-up of CP over resolution, it would be nice to find an
efficient algorithm for finding CP proofs and a question to ask is whether trying to find tree-like
CP proofs would be an efficient strategy for finding Cutting Planes proofs. Johannsen [18] gave a
superpolynomial separation, with a lower bound of the form Ω(nlog n), between tree-like CP and
dag-like CP (this was previously known for CP ∗ from [6]). Here we improve that separation to
exponential (Corollary 20). This shows that searching for tree-like proofs is also not a good strategy
for finding proofs in CP .

The separation between tree-like and dag-like versions of resolution and CP are obtained us-
ing the technique of the interpolation method introduced by Kraj́ıček [21]. Closely related ideas
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appeared previously in the mentioned works that gave lower bounds for fragments of CP ([17, 6]).
The interpolation method applied on CP , translates proofs of certain formulas to monotone real
circuits (a generalization of boolean circuits). The translation has two important features. First,
it preserves the size, that is, the size of the circuit is similar to the size of the proof from which the
circuit is built. Second, if the proof is tree-like, the circuit will be also tree-like, i.e., a formula. So
we can prove size lower bounds for tree-like CP proofs by proving size lower bounds for monotone
real formulas.

In section 3 we prove that a certain boolean function Genn requires exponential size monotone
real formulas. This is a consequence of extending the result of Raz and McKenzie [25], proving
linear depth lower bounds for monotone boolean circuits, to the case of monotone real circuits.
We use these circuit complexity lower bounds to obtain proof complexity lower bound using the
interpolation method.

2 Preliminaries and Outline of the Paper

In this section we introduce the notions we use and our main results. We also discuss the structure
of the paper and the dependency among our main results.

2.1 Proof Systems

We start by giving a short description of the proof systems studied in this paper. Most proof
systems can be used in a tree-like or dag-like fashion. In a tree-like proof any line in the proof can
be used only once as a premise. Should the same line be used twice, it must be rederived. A proof
system that only produces tree-like proofs is called tree-like. Otherwise we will call it dag-like or
when nothing is said it is understood that the system is dag-like.

2.1.1 Resolution

Resolution is a refutation proof system for CNF formulas, which are represented as sets of clauses,
i.e., disjunctions of literals. Clauses that contain the same literals are considered equal. The only
inference rule is the resolution rule:

C ∨x D ∨ x̄

C ∨D
.

That is, from clauses C ∨x and D ∨ x̄ we get clause C ∨ D, called the resolvent . We say that the
variable x is eliminated in this resolution step. A resolution refutation of a set Σ of clauses is a
derivation of the empty clause from Σ using the resolution rule. Resolution is a sound and complete
refutation system, i.e., a set of clauses has a resolution refutation if and only if it is unsatisfiable.

Several refinements of the resolution proof system have been proposed. These refinements
reduce the search space by restricting the choice of pairs of clauses to which the resolution rule can
be applied. In this paper we consider the following three refinements, all of which are still complete:

1. The regular resolution system: Viewing the refutations as graph, in any path from the empty
clause to any initial clause, no variable is eliminated twice.

2. The ordered1 resolution system: There exists an ordering of the variables in the formula being
refuted, such that if a variable x is eliminated before a variable y on any path from an initial

1In Goerdt’s paper [13] and in the preliminary version [5] of this paper, this refinement is called Davis-Putnam

resolution. In the meantime, we have learned that it is better known as ordered resolution.
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clause to the empty clause, then x is before y in the ordering. As no variable is eliminated
twice on any path, ordered resolution is a restriction of regular resolution.

3. The negative resolution system: To apply the resolution rule, one of the two clauses must
consist of negative literals only.

There is an algorithm (see e.g. Urquhart [29]) that transforms a tree-like resolution proof into
a possibly smaller regular tree-like resolution proof, therefore tree-like resolution proofs of minimal
size are regular. This means that from the point of view of proof complexity, tree-like resolution
and tree-like regular resolution are equivalent.

2.1.2 Cutting Planes

The Cutting Planes proof system, CP for short, is a refutation system for CNF formulas, as
resolution is. It works with linear inequalities. The initial clauses are transformed into linear
inequalities. A generic clause

k
∨

i=1

pji
∨

m
∨

i=1

¬pli

is transformed into a linear inequality

k
∑

i=1

pji
+

m
∑

i=1

(1 − pli) ≥ 1.

The CP rules are basic algebraic manipulations, additions of two inequalities, multiplication of an
inequality by a positive integer and the following division rule:

∑

i∈I aixi ≥ k
∑

i∈I
ai

b xi ≥
⌈

k
b

⌉ ,

where b is a positive integer that evenly divides all ai, i ∈ I. A CP refutation of a set E of
inequalities is a derivation of 0 ≥ 1 from the inequalities in E and the axioms x ≥ 0 and −x ≥ −1
for every variable x, using the CP rules. It can be shown that a set of inequalities has a CP -
refutation iff it has no {0, 1}-solution. Any assignment satisfying the original clauses is actually
a {0, 1}-solution of the corresponding inequalities, provided that we assign the numerical value 1
to True and the value 0 to False. It is easy to translate, see [11], resolution refutations into CP
refutations similar in size to the original resolution refutations. Moreover if the resolution refutation
is tree-like, the resulting CP refutation is also tree-like.

2.2 Monotone Real Circuits

An important part of this paper is concerned with monotone real circuits, which were introduced
by Pudlák [23]. A monotone real circuit is a circuit of fan-in 2 computing with real numbers where
every gate computes a nondecreasing real function. We require that monotone real circuits output
0 or 1 on every input of zeroes and ones only, so that they are a generalization of monotone boolean
circuits. The depth and size of a monotone real circuit are defined as for boolean circuits. A
formula is a circuit in which every gate has at most fan-out 1, i.e., a tree-like circuit.

Pudlák [23], Cook and Haken [9] and Fu [12] gave lower bounds on the size of monotone real
circuits. Rosenbloom [26] showed that they are strictly more powerful than monotone boolean
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circuits, since every slice function can be computed by a linear-size, logarithmic-depth monotone
real circuit, whereas most slice functions require exponential size general boolean circuits. On the
other hand, Jukna [19] gives a general lower bound criterion for monotone real circuits, and uses it
to show that certain functions in P/poly require exponential-size monotone real circuits, hence the
computing power of monotone real circuits and general boolean circuits is incomparable.

For a monotone boolean function f , we denote by dR(f) the minimal depth of a monotone real
circuit computing f , and by sR(f) the minimal size of a monotone real formula computing f .

2.3 Deterministic and Real Communication Complexity

The use of communication complexity as a tool to prove depth lower bounds for monotone circuits
was introduced by Karchmer and Wigderson [20]. They gave an Ω(log2 n) lower bound on the
depth of monotone circuits computing st-connectivity.

Kraj́ıček [22] introduced a notion of real communication complexity, generalizing ordinary com-
munication complexity, that is suitable to prove depth lower bounds for monotone real circuits.
This was used by Johannsen [18] to extend the depth lower bound for st-connectivity to monotone
real circuits.

Raz and McKenzie [25] proved an Ω(nǫ) lower bound on the depth of monotone circuits com-
puting a certain function Genn, which, on the other hand, can be computed by monotone circuits
of polynomial size. This gives a strong separation of the depth and size complexity of monotone
circuits. We extend this lower bound to monotone real circuits, again using the notion of real
communication complexity.

2.3.1 Communication Complexity

Let R ⊆ X × Y × Z be a multifunction, i.e., for every pair (x, y) ∈ X × Y , there is a z ∈ Z with
(x, y, z) ∈ R. We view such a multifunction as a search problem, i.e., given input (x, y) ∈ X × Y ,
the goal is to find a z ∈ Z such that (x, y, z) ∈ R.

A deterministic communication protocol P over X×Y ×Z specifies the exchange of information
bits between two players, I and II, that receive as inputs respectively x ∈ X and y ∈ Y and finally
agree on a value P (x, y) ∈ Z such that (x, y, P (x, y)) ∈ R. The deterministic communication
complexity of R, CC(R), is the number of bits communicated between players I and II in an
optimal protocol for R.

2.3.2 Real Communication Complexity

A real communication protocol over X × Y ×Z is executed by two players I and II who exchange
information by simultaneously playing real numbers and then comparing them according to the
natural order of R. This generalizes ordinary deterministic communication protocols in the following
way: in order to communicate a bit, the sender plays this bit, while the receiver plays a constant
between 0 and 1, so that he can determine the value of the bit from the outcome of the comparison.

Formally, such a protocol P is specified by a binary tree, where each internal node v is labeled
by two functions f I

v : X → R, giving player I’s move, and f II
v : Y → R, giving player II’s move,

and each leaf is labeled by an element z ∈ Z. On input (x, y) ∈ X × Y , the players construct a
path through the tree according to the following rule:

At node v, if f I
v (x) > f II

v (y), then the next node is the left son of v, otherwise the right
son of v.
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The value P (x, y) computed by P on input (x, y) is the label of the leaf reached by this path.
A real communication protocol P solves a search problem R ⊆ X × Y × Z if for every (x, y) ∈

X × Y , (x, y, P (x, y)) ∈ R holds. The real communication complexity CCR(R) of a search problem
R is the minimal depth of a real communication protocol that solves R.

For a natural number n, let [n] denote the set {1, . . . , n}. Let f : {0, 1}n → {0, 1} be a monotone
boolean function, let X := f−1(1) and Y := f−1(0), and let the multifunction Rf ⊆ X × Y × [n]
be defined by

(x, y, i) ∈ Rf iff xi = 1 and yi = 0

The Karchmer-Wigderson game for f is defined as follows: Player I receives an input x ∈ X and
Player II an input y ∈ Y . They have to agree on a position i ∈ [n] such that (x, y, i) ∈ Rf . The
Karchmer-Wigderson game for a monotone boolean function f is also denoted by Rf . As happens
with monotone boolean functions and communication complexity, there is a relation between the
real communication complexity of Rf and the depth of monotone real circuits (and the size of a
monotone real formulas) computing f .

Lemma 1 (Kraj́ıček [22]). Let f be a monotone boolean function. Then

1. CCR(Rf ) ≤ dR(f);

2. CCR(Rf ) ≤ log3/2 sR(f).

For a proof see [22] or [18]. Notice that by 2 a linear lower bound for the real communication
complexity of Rf gives an exponential lower bound for the size of the smallest monotone real
formula computing f .

2.4 DART Games and Structured Protocols

Raz and McKenzie [25] introduced a special kind of communication games, called DART games,
and a special class of communication protocols, the structured protocols, for solving them.

For m,k ∈ N, DART(m,k) is the set of communication games specified by a relation R ⊆
X × Y × Z such that:

• X = [m]k. I.e., the inputs for Player I are k-tuples of elements xi ∈ [m].

• Y = ({0, 1}m)k. I.e., the inputs for Player II are k-tuples of binary colorings yi of [m].

• For all i = 1, . . . , k let ei = yi(xi) ∈ {0, 1} (i.e., the xi-th bit in the m-bits string yi). The
relation R ⊆ X × Y × Z defining the game only depends on e1, . . . , ek and z, i.e., we can
describe R(x, y, z) as R((e1, . . . , ek), z).

• R((e1, . . . , ek), z) can be expressed as a DNF-Search-Problem, i.e., there exists a DNF-
tautology FR defined over the variables e1, . . . , ek such that Z is the set of terms of FR, and
R((e1, . . . , ek), z) holds if and only if the term z is satisfied by the assignment (e1, . . . , ek).

A structured protocol for a DART game is a communication protocol for solving the search
problem R, where player I gets input x ∈ X, player II gets input y ∈ Y , and in each round,
player I reveals the value xi for some i, and II replies with yi(xi). The structured communication
complexity of R ∈ DART(m,k), denoted by SC(R), is the minimal number of rounds in a structured
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protocol solving R. In [25] it was proved that CC(R) = SC(R) · Ω(log m) for R ∈ DART(m,k).
We generalize this result to real communication complexity, proving

CCR(R) = SC(R) · Ω(log m).

Observe that at each structured round the two players transmit ⌈log m⌉ + 1 bits. The first player
transmits a number in [m] and the second answers with a bit. Since both players know the structure
of the protocol for the game, at each round they both know what is the coordinate i of the inputs
they are talking about and they have no need to transmit it. So for a DART game R we have
CCR(R) ≤ SC(R) · Ω(log m).

Proving the opposite inequality, which is one of our main results, is much harder. In Theorem
6 we show that for every relation R ∈ DART(m,k), where m ≥ k14, CCR(R) ≥ SC(R) · Ω(log m).

2.5 The Interpolation Method

The separations between tree-like Cutting Planes (respectively resolution) and Cutting Planes
(resolution) are among our main results about proof complexity. The lower bound part of the
separation is obtained employing the following Theorem which relates the size of Cutting Planes
refutations with size of monotone real circuits.

Theorem 2 (Pudlák [23]). Let ~p, ~q,~r be disjoint vectors of variables, and let A(~p, ~q) and B(~p,~r)
be sets of inequalities in the indicated variables such that the variables ~p either have only nonnegative
coefficients in A(~p, ~q) or have only nonpositive coefficients in B(~p,~r).

Suppose there is a CP refutation P of A(~p, ~q) ∪ B(~p,~r). Then there is a monotone real circuit
C(~p) of size O(|P |) such that for any vector ~a ∈ {0, 1}|~p|

C(~a) = 0 → A(~a, ~q) is unsatisfiable

C(~a) = 1 → B(~a,~r) is unsatisfiable

Furthermore, if P is tree-like, then C(~p) is a monotone real formula.

The fact that the interpolant C(~p) is in a monotone real formula if the refutation is tree-like is
not stated explicitly in [23], but it can be checked easily by analyzing the original proof of theorem
2 in [23],

We use this theorem to get lower bounds for cutting planes refutations from lower bounds for
monotone real formulas. Recall that a minterm (respectively a maxterm) of a boolean function
f : {0, 1}n → {0, 1} is a set of inputs x ∈ {0, 1}n such that f(x) = 1 (respectively f(x) = 0) and
for each y ∈ {0, 1}n obtained from x by changing a bit from 1 to 0 (respectively by changing a bit
from 0 to 1) it holds that f(y) = 0 (respectively f(y) = 1).

For a certain boolean function f we will apply Theorem 2 to a CNF -formula A(~p, ~q) ∪ B(~p,~r)
such that A(~p, ~q) will encode that ~p is a minterm of f and B(~p,~r) will encode that ~p is maxterm of
f . Using the interpolation theorem, from any tree-like CP proof of A(~p, ~q)∪B(~p,~r) we will get an
interpolant which is a monotone real formula computing f . Therefore if we prove exponential lower
bounds for the size of the tree-like monotone real circuits computing f , we immediately obtain an
exponential lower bound for tree-like Cutting Planes refutations for A(~p, ~q) ∪ B(~p,~r). The same
result also holds for tree-like resolution.

To get the separation results we need a monotone boolean function with some nice properties,
namely:

1. Exponential lower bounds for monotone real formulas computing the function, and
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2. The corresponding A(~p, ~q)∪B(~p,~r) formula must have polynomial-size resolution (and there-
fore also CP ) refutations.

The chosen monotone boolean function f is the function Genn : {0, 1}n3

→ {0, 1} considered
by Raz and McKenzie [25]. The input bits are called ta,b,c for a, b, c ∈ [n]. The function is defined
as follows: Genn(~t) = 1 iff ⊢ n where for c ∈ [n], ⊢ c (meaning c is generated) is defined recursively
by

⊢ c iff c = 1 or there are a, b ≤ n with ⊢ a , ⊢ b and ta,b,c = 1 .

From now on we will write a, b ⊢ c for ta,b,c = 1.
To get the exponential separation the task to be done is:

1. Prove exponential lower bounds for the size of monotone real formulas computing Genn;

2. Find CNF -formulas A(~p, ~q) and B(~p,~r) expressing respectively a minterm and a maxterm of
Genn.

3. Show polynomial-size resolution (and CP ) refutations for A(~p, ~q) ∪ B(~p,~r)

In section 3 we will show, among other things, that CCR(RGenn) ≥ Ω(nǫ), for some ǫ > 0. From
this, it follows by part 2 of Lemma 1 that sR(Genn) ≥ 2Ω(nǫ), thus task 1 is achieved. Tasks 2 and
3 will be developed in section 4.

3 Lower bounds for Real Communication Complexity

In this section we prove a Ω(nǫ) lower bound for the real communication complexity of the
Karchmer-Wigderson game associated to Genn, denoted by RGenn

.

Theorem 3. For some ǫ > 0 and sufficiently large n

CCR(RGenn) ≥ Ω(nǫ).

To prove theorem 3 we define a DART game PyrGen(m,d) in section 3.1 related to the Genn

function. This game is used with parameters m = d28 and n =
(

d+1
2

)

m+2, so that d ≈ n1/30. Then
we will prove the following results from which Theorem 3 directly follows.

SC(PyrGen(m,d)) ≥ d (Lemma 4)

CCR(PyrGen(m,d)) ≥ SC(PyrGen(m,d))Ω(log m) (Theorem 6)

CCR(RGenn
) ≥ CCR(PyrGen(m,d)) (Lemma 5)

Lemma 4 is proved in [25], therefore we omit its proof. Theorem 6 is proved in section 3.2 for any
DART game R. Lemma 5 is proved in section 3.1. In section 3.3 we deduce some lower bounds for
monotone real circuits from these results.

3.1 The Pyramidal Generation Game

For d ∈ N, let Pyrd := { (i, j) : 1 ≤ j ≤ i ≤ d }. Following [25], a communication game in
DART (m,

(d+1
2

)

) called PyrGen(m,d) is defined as follows: We regard the indices as elements
of Pyrd, so that the inputs for the two players I and II in the PyrGen(m,d) game are respec-
tively sequences of elements xi,j ∈ [m] and yi,j ∈ {0, 1}m with (i, j) ∈ Pyrd, and we picture these
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as laid out in a pyramidal form with (1, 1) at the top and (d, j), 1 ≤ j ≤ d and the bottom. The
goal of the game is to find either an element colored 0 at the top of the pyramid, or an element
colored 1 at the bottom of the pyramid, or an element colored 1 with the two elements below it
colored 0. That is we have to find indices (i, j) such that one of the following holds:

1. i = j = 1 and y1,1(x1,1) = 0, or

2. yi,j(xi,j) = 1 and yi+1,j(xi+1,j) = 0 and yi+1,j+1(xi+1,j+1) = 0, or

3. i = d and yd,j(xd,j) = 1.

Observe that, setting ei,j = yi,j(xi,j) for 1 ≤ j ≤ i ≤ d, this search problem can be defined as a
DNF search problem given by the following DNF tautology:

ē1,1 ∨
∨

1≤j≤i≤d−1

(ei,j ∧ ēi+1,j ∧ ēi+1,j+1) ∨
∨

1≤j≤d

ed,j

Therefore, PyrGen(m,d) is a game in DART(m,
(d+1

2

)

).
A lower bound on the structured communication complexity of PyrGen(m,d) was proved in

[25]:

Lemma 4 (Raz/McKenzie [25]). SC(PyrGen(m,d)) ≥ d.

The following reduction shows that the real communication complexity of the game PyrGen(m,d)
is bounded by the real communication complexity of the Karchmer-Wigderson game for Genn (de-
noted by RGenn) for a suitable n. The proof is taken from [25]. It is included because it can help
to understand other parts of this paper.

Lemma 5. Let d,m ∈ N and let n := m ·
(d+1

2

)

+ 2. Then

CCR(PyrGen(m,d)) ≤ CCR(RGenn).

Proof. We prove that any protocol solving the Karchmer-Wigderson game for Genn can be used
to solve the PyrGen(m,d) game. Recall that PyrGen(m,d) is a DART (m,

(d+1
2

)

) game, so the
two players I and II receive inputs respectively of the form (x1,1, . . . , xd,d) where xi,j ∈ [m] for all
(i, j) ∈ Pyrd and (y1,1, . . . , yd,d) where yi,j ∈ {0, 1}m for all (i, j) ∈ Pyrd.

From their respective inputs for the PyrGen(m,d) game, Player I and II compute respectively
a minterm txa,b,c and a maxterm tya,b,c, for Genn and then they play the Karchmer-Wigderson game
applying the protocol P .

As in [25] we consider fixed the element 1 as a bottom generator and the element n as the
element we want to generate. We interpret the remaining n− 2 =

(d+1
2

)

m elements between 2 and
n − 1 as triples (i, j, k), where (i, j) ∈ Pyrd and k ∈ [m].

Now player I computes from his input (x1,1, . . . , xd,d) an input txa,b,c for Genn such that
Genn(txa,b,c) = 1 by setting the following (recall that a, b ⊢ c means ta,b,c = 1):

1, 1 ⊢ gd,j for 1 ≤ j ≤ d

g1,1, g1,1 ⊢ n

gi+1,j , gi+1,j+1 ⊢ gi,j for (i, j) ∈ Pyrd−1

where gi,j := (i, j, xi,j) ∈ {2, . . . , n−1} and all the other bits txa,b,c = 0. This completely determines
txa,b,c, and obviously Genn(txa,b,c) = 1 since we have forced a generation of n (in a pyramidal form).
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Likewise Player II computes from his input (y1,1, . . . , yd,d) a coloring col of the elements from
[n] by setting col(1) = 0, col(n) = 1 and col((i, j, k)) = yi,j(k) (the k-th bit of y(i,j)). From this
coloring, he computes an input tya,b,c by setting tya,b,c = 1 iff it is not the case that col(c) = 1 and

col(a) = col(b) = 0. Obviously Genn(tya,b,c) = 0.
Running the protocol for the Karchmer-Wigderson game for Genn now yields a triple (a, b, c)

such that txa,b,c = 1 and tya,b,c = 0. By definition of ty, this means that col(a) = col(b) = 0 and
col(c) = 1, and by definition of tx one of the following cases must hold:

• a = b = 1 and c = gd,j for some j ≤ d. By definition of col, yd,j(xd,j) = 1.

• c = n and a = b = g1,1. In this case, y1,1(x1,1) = 0.

• a = gi+1,j, b = gi+1,j+1 and c = gi,j. Then we have yi,j(xi,j) = 1, and yi+1,j(xi+1,j) =
yi+1,j+1(xi+1,j+1) = 0.

In either case, the players have solved PyrGen(m,d) without any additional communication.

3.2 Relation between Structured Complexity and Real Communication Com-

plexity

We prove here the following general Theorem for DART games.

Theorem 6. Let m,k ∈ N. For every relation R ∈ DART(m,k), where m ≥ k14,

CCR(R) ≥ SC(R) · Ω(log m) .

We first need some combinatorial notions from [25] and some lemmas. Let A ⊆ [m]k and 1 ≤ j ≤
k. For x ∈ [m]k−1, let degj(x,A) be the number of ξ ∈ [m] such that (x1, . . . , xj−1, ξ, xj , . . . , xk−1) ∈
A. Then we define

A[j] :=
{

x ∈ [m]k−1 : degj(x,A) > 0
}

AV DEGj(A) :=
|A|

|A[j]|

MINDEGj(A) := min
x∈A[j]

degj(x,A)

Thickness(A) := min
1≤j≤k

MINDEGj(A) .

The following lemmas about these notions were proved in [25]:

Lemma 7 ([25]). For every A′ ⊆ A and 1 ≤ j ≤ k,

AV DEGj(A
′) ≥

|A′|

|A|
AV DEGj(A) (1)

Thickness(A[j]) ≥ Thickness(A) (2)

Lemma 8 ([25]). Let 0 < δ < 1 be given. If for every 1 ≤ j ≤ k, AV DEGj(A) ≥ δm, then for
every α > 0 there is A′ ⊆ A with |A′| ≥ (1 − α)|A| and

Thickness(A′) ≥
αδm

k
.

10



In particular, setting α = 1
2 and δ = 4m− 1

14 , we get

Corollary 9. If m ≥ k14 and for every 1 ≤ j ≤ k, AV DEGj(A) ≥ 4m
13
14 , then there is A′ ⊆ A

with |A′| ≥ 1
2 |A| and Thickness(A) ≥ m

11
14 .

For a relation R ∈ DART(m,k), A ⊆ X and B ⊆ Y , let CCR(R,A,B) be the real communica-
tion complexity of R restricted to A × B.

Definition ((α, β, ℓ)-game). Let m ∈ N, m ≥ k14. Let A ⊆ X and B ⊆ Y . A triple (R,A,B) is
called an (α, β, ℓ)-game if the following conditions hold:

1. R ∈ DART(m,k),

2. SC(R) ≥ ℓ,

3. |A| ≥ 2−α|X| and |B| ≥ 2−β |Y |,

4. Thickness(A) ≥ m
11
14 .

The following lemma and its proof are slightly different from the corresponding lemma in [25],
because we use the strong notion of real communication complexity where [25] use ordinary com-
munication complexity. The modification we apply is analogous to that introduced by Johannsen
[18] to improve the result of Karchmer and Wigderson [20] to the case of real communication com-
plexity. This modification will affect the proof of the first point of the next lemma. We include a
proof of the second part for completeness.

Lemma 10. For every α, ℓ ≥ 0 and 0 ≤ β ≤ m
1
7 , m ≥ 100014 and every (α, β, ℓ)-game (R,A,B),

1. if for every 1 ≤ j ≤ k, AV DEGj(A) ≥ 8m
13
14 , then there is an (α+2, β+1, ℓ)-game (R′, A′, B′)

with

CCR(R′, A′, B′) ≤ CCR(R,A,B) − 1 .

2. if ℓ ≥ 1 and for some 1 ≤ j ≤ k, AV DEGj(A) < 8m
13
14 , then there is an (α + 3 − log m

14 , β +
1, ℓ − 1)-game (R′, A′, B′) with

CCR(R′, A′, B′) ≤ CCR(R,A,B) .

Proof of Lemma 10 (Part 1). Let (R,A,B) be a (α, β, ℓ)-game. First we show that CCR(R,A,B) 6=
0. Assume by contradiction that CCR(R,A,B) = 0. Then the players have no need to transmit
information to solve R. This means that the answer to the game is implicit in the domain A × B
and therefore by requirement (4) of DART games there is a term in the DNF tautology FR defining
R that is satisfied for every (x, y) ∈ A×B. Therefore there is at least a coordinate j, 1 ≤ j ≤ k such
that yj(xj) is constant (i.e., is always 0 or always 1) . If γ denotes the number of possible different
values of xj in elements of A, then this implies that |B| ≤ 2mk−γ . On the other hand, |B| ≥ 2mk−β ,

hence it follows that β ≥ γ, which is a contradiction since β ≤ m
1
7 , whereas AV DEGj(A) ≥ 8m

13
14

implies γ ≥ 8m
13
14 .

Let an optimal real communication protocol solving R restricted to A×B be given. For a ∈ A
and b ∈ B, let ρa and σb be the real numbers played by I and II in the first round on input a and
b, respectively. W.l.o.g. we can assume that these are |A| + |B| pairwise distinct real numbers.
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Now consider a {0, 1}-matrix of size |A|× |B| with columns indexed by the ρa and rows indexed
by the σb, both in increasing order, and where the entry in position (ρa, σb) is 1 if ρa > σb and 0
if ρa ≤ σb. Thus this entry determines the outcome of the first round, when these numbers are
played. It is now obvious that either the upper right quadrant or the lower left quadrant must form
a monochromatic rectangle.

Hence there are A◦ ⊆ A and B′ ⊆ B with |A◦| ≥ 1
2 |A| and |B′| ≥ 1

2 |B| such that R restricted to
A◦ × B′ can be solved by a protocol with one round fewer than the original protocol. This means
that CCR(R,A◦, B′) ≤ CCR(R,A,B) − 1. By Equation (1) of Lemma 7, AV DEGj(A

◦) ≥ 4m
13
14

for every 1 ≤ j ≤ k, hence by Corollary 9 there is A′ ⊆ A◦ with |A′| ≥ 1
2 |A

◦| ≥ 1
4 |A| and

Thickness(A′) ≥ m
11
14 . Thus (R,A′, B′) is an (α + 2, β + 1, ℓ)-game, moreover, since A′ ⊆ A◦, we

have that CCR(R,A′, B′) ≤ CCR(R,A◦, B′), from which the Lemma follows.
(Part 2) We proceed like in the proof of the corresponding lemma of [25], with the num-

bers slightly adjusted. Assume without loss of generality that k is the coordinate for which
AV DEGk(A) < 8m

13
14 . Let R0 and R1 be the restrictions of R in which the k-th coordinate

ek = yk(xk) is fixed to 0 and 1, respectively. Obviously, R0 and R1 are DART (m,k − 1) relations,
and therefore at least one of SC(R0) and SC(R1) is at least ℓ−1. Assume without loss of generality
that SC(R0) ≥ ℓ − 1. We will prove that there are two sets A′ ⊆ [m]k−1 and B′ ⊆ ({0, 1}m)k−1

such that the following properties hold:

|A′| ≥
mk−1

2α+3− log m

14

(3)

|B′| ≥
2m(k−1)

2β+1
(4)

Thickness(A′) ≥ m
11
14 (5)

CCR(R0, A
′, B′) ≤ CCR(R,A,B) (6)

This means that there is a (α+3− log m
14 , β+1, ℓ−1)-game (R0, A

′, B′) such that CCR(R0, A
′, B′) ≤

CCR(R,A,B) and this proves part 2 of Lemma 10.
Given any set U ⊂ [m] consider the sets AU ⊆ [m]k−1 and BU ⊆ ({0, 1}m)k−1 associated to the

set U by the following definition of [25]:

• (x1, . . . xk−1) ∈ AU iff there is an u ∈ U such that (x1, . . . xk−1, u) ∈ A;

• (y1, . . . yk−1) ∈ BU iff there is a w ∈ {0, 1}m such that w(u) = 0 for all u ∈ U and
(y1, . . . yk−1, w) ∈ B.

The following two claims can be proved exactly as the corresponding Claims of [25] and we omit
their proof.

Claim 11. For a random set U of size m
5
14 , with m ≥ 100014, we have that

ProbU

[

AU = A[k]
]

≥
3

4
.

Claim 12. For a random set U of size m
5
14 , with m ≥ 100014 we have that

ProbU

[

|BU | ≥
|B|

2m+1

]

≥
3

4
.

Moreover it is immediate to see that the same reduction used in Claim 6.3 of [25] also works
for the case of real communication complexity. Therefore we get:

12



Claim 13. For every set U ⊂ [m]

CCR(R0, AU , BU ) ≤ CCR(R,A,B) .

Take a random set U which with probability greater than 1
2 , satisfies both the properties of

Claim 11 and Claim 12, and define A′ := AU and B′ := BU . This means that with probability at
least 1

2 both A′ = A[k] and |B′| ≥ |B|
2m+1 hold.

Recall that |A|
|A′| = |A|

|A[k]| = AV DEGk(A) and that, by hypothesis on Part 2 of the lemma

|AV DEGk(A)| ≤ 8m
13
14 . Therefore we have that

|A′| ≥
|A|

8m
13
14

≥
mk

2α8m
13
14

=
mk−1

2α+3− log m
14

.

This proves (3). For (4) observe that by Claim 12 we have

|B′| ≥
|B|

2m+1
≥

2mk

2β2m+1
=

2m(k−1)

2β+1
.

The property (5) follows directly from Lemma 7 (2), and finally (6) follows from Claim 13.

3.2.1 Proof of Theorem 6

Proof. Let k ∈ N, k ≥ 1000. We prove that for any α, β, ℓ,m ≥ 0, with β ≤ m1/7, ℓ ≥ 1, and
m ≥ k14, every (α, β, ℓ)-game (R,A,B) is such that

CCR(R,A,B) ≥ ℓ ·
( log m

42
−

4

3

)

−
α + β

3
. (7)

Observe that by Definition of (α, β, ℓ)-game, when α = β = 0 we have that A = X and B = Y .
Therefore CCR(R,A,B) = CCR(R). Moreover the right side of Equation 7 reduces to ℓ ·Ω(log m).
Since by the same Definition ℓ ≤ SC(R), for α = β = 0 we get the claim of the theorem:

CCR(R) ≥ SC(R) · Ω(log m)

To prove Equation 7, we proceed by induction on ℓ ≥ 1 and β ≤ m1/7. In the base case ℓ < 1
(that is ℓ = 0) and β > m

1
7 , the inequality (7) is trivial, since the right hand side gets negative

for large m. In the inductive step consider (R,A,B) be an (α, β, ℓ)-game, and assume that (7)
holds for all (α′, β′, ℓ′)-games with ℓ′ ≤ ℓ and β′ > β. For sake of contradiction, suppose that

CCR(R,A,B) < ℓ ·
(

log m
42 − 4

3

)

− α+β
3 . Then either for every 1 ≤ j ≤ k, AV DEGj(A) ≥ 8m

13
14 , and

Lemma 10 gives an (α + 2, β + 1, ℓ)-game (R′, A′, B′) with

CCR(R′, A′, B′) ≤ CCR(R,A,B) − 1

< ℓ ·
( log m

42
−

4

3

)

−
(α + 2) + (β + 1)

3
,

or for some 1 ≤ j ≤ k, AV DEGj(A) < 8m
13
14 , then Lemma 10 gives an (α + 3− log m

14 , β + 1, ℓ− 1)-
game (R′, A′, B′) with

CCR(R′, A′, B′) < ℓ ·
( log m

42
−

4

3

)

−
α + β

3

= (ℓ − 1) ·
( log m

42
−

4

3

)

−
(α + 3 − log m

14 ) + (β + 1)

3
,

both contradicting the assumption.
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3.3 Consequences for Monotone Real Circuits

As a first corollary to Theorem 6, we observe that for DART games, real communication protocols
are no more powerful than deterministic communication protocols.

Corollary 14. Let m,k ∈ N. For R ∈ DART(m,k) with m ≥ k14,

CCR(R) = Θ(CC(R)) .

Proof. CC(R) ≥ CCR(R) ≥ SC(R) · Ω(log m) ≥ Ω(CC(R)).

From Theorem 3 we obtain consequences for monotone real circuits analogous to those obtained
in [25] for monotone boolean circuits. An immediate consequences of Theorem 3 and Lemma 1 is
the following

Theorem 15. Any tree-like monotone real circuit computing the boolean function Genn must have
size 2Ω(nǫ), for some ǫ > 0.

Definition (Pyramidal Generation). Let ~t be an input to Genn. We say that n is generated
in a depth d pyramidal fashion by ~t if there is a mapping m : Pyrd → [n] such that the following
hold (recall that a, b ⊢ c means ta,b,c = 1):

1, 1 ⊢ m(d, j) for every j ≤ d

m(i + 1, j),m(i + 1, j + 1) ⊢ m(i, j) for every (i, j) ∈ Pyrd−1

m(1, 1),m(1, 1) ⊢ n

We can obtain an analogous of Theorem 15 also for the simpler case in which the generation is
restricted to be only in a pyramidal form.

Corollary 16. Every monotone real formula that outputs 1 on every input to Genn for which n
is generated in a depth d pyramidal fashion, and outputs 0 on all inputs where Genn is 0, has to
be of size Ω(2nǫ

), for some ǫ > 0.

Proof. To simplify, let Pyrgenn be any monotone boolean function that outputs 1 on every input
to Genn for which n is generated in a depth d pyramidal fashion, and outputs 0 on all inputs where
Genn is 0. Note that there are many such functions, since the output is not specified in the case
where n can be generated, but not in a depth d pyramidal fashion. Observe that in Lemma 5,
Player I builds from his input an input for Genn which enforces a depth d pyramidal generation.
So the proof of Lemma 6 also shows that CCR(PyrGen(m,d)) ≤ CCR(RPyrgenn). Lemma 4 and
Theorem 6 then imply that CCR(RPyrgenn) ≥ Ω(nǫ), for some ǫ > 0. Finally Lemma 1 gives the
statement of the corollary.

The other consequences drawn from Theorem 6 and Lemma 4 in [25] apply to monotone real
circuits as well, e.g. we just state without proof the following result:

Theorem 17. There are constants 0 < ǫ, γ < 1 such that for every function d(n) ≤ nǫ, there is
a family of monotone functions fn : {0, 1}n → {0, 1} that can be computed by monotone boolean
circuits of size nO(1) and depth d(n), but cannot be computed by monotone real circuits of depth
less than γ · d(n).

The method also gives a simpler proof of the lower bounds in [18], in the same way as [25]
simplifies the lower bound of [20].
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4 Separation between Tree-like and Dag-like Versions of Resolu-

tion and Cutting Planes

We will define an unsatisfiable CNF -formula Gen(~p, ~q) ∧ Col(~p,~r) that fulfills the assumptions of
Theorem 2, so any CP refutation of it can be transformed into a monotone real circuit, and any
tree-like CP refutation into a monotone real formula. This circuit (or formula) is similar in size to
the original CP refutation. We will show that it computes a boolean function related to Genn: It
outputs 1 if n is generated in a pyramidal way, so the exponential size lower bound in corollary 16
imply an exponential size lower bound for tree-like CP refutations of Gen(~p, ~q)∧Col(~p,~r). Besides
we give a polynomial-size resolution refutation of Gen(~p, ~q) ∧ Col(~p,~r). As CP refutations are
shorter than resolution refutations, we get the separation between tree-like CP and CP , in fact
also a separation of tree-like resolution from resolution.

Let n and d be natural numbers whose values are to be fixed. Recall that the set Pyrd is
{ (i, j) : 1 ≤ j ≤ i ≤ d }. The vector ~p, that is, the variables pa,b,c for a, b, c ∈ [n], represent the
input to Genn.

The set of clauses Gen(~p, ~q) is designed to be satisfiable if in the input ~p, n is generated in a
depth d pyramidal fashion. To this end, the variables qi,j,a for (i, j) ∈ Pyrd and a ∈ [n] encode a
mapping m : Pyrd → [n] as in the definition of pyramidal generation in section 3.3, where qi,j,a is
intended to express that m(i, j) = a.

On the other hand, the set of clauses Col(~p,~r) is designed to be satisfiable if for the input ~p,
Genn(~p) = 0. To achieve this, the variables ra for a ∈ [n] encode a coloring of the elements of
[n] such that element 1 is colored 0, element n is colored 1, and the elements colored 0 are closed
under generation, i.e., if a and b are colored 0 and a, b ⊢ c, then c is also colored 0.

The set Gen(~p, ~q) is given by (8) - (11), and Col(~p,~r) by (12) - (14).
∨

1≤a≤n

qi,j,a for (i, j) ∈ Pyrd (8)

q̄d,j,a ∨ p1,1,a for 1 ≤ j ≤ d and a ∈ [n] (9)

q̄1,1,a ∨ pa,a,n for a ∈ [n] (10)

q̄i+1,j,a ∨ q̄i+1,j+1,b ∨ q̄i,j,c ∨ pa,b,c for (i, j) ∈ Pyrd−1 and a, b, c ∈ [n] (11)

p̄1,1,a ∨ r̄a for a ∈ [n] (12)

p̄a,a,n ∨ ra for a ∈ [n] (13)

ra ∨ rb ∨ p̄a,b,c ∨ r̄c for a, b, c ∈ [n] (14)

Obviously, Gen(~p, ~q) ∧ Col(~p,~r)is unsatisfiable. Observe that the variables ~p occur only positively
in Gen(~p, ~q) and only negatively in Col(~p,~r), thus Theorem 2 yields an interpolating monotone real
formula C(~p).

Now if for a assignment ~t to the variables ~p, n is generated in a depth d pyramidal fashion,
then Gen(~t, ~q) is satisfiable by setting the values of the variables qi,j,a according to the mapping m.
Therefore Col(~t, ~r) must be unsatisfiable, and thus C(~t) = 1.

If on the other hand Genn(~t) = 0, then Col(~t, ~r) can be satisfied by assigning the color 0 to
precisely those elements that can be generated in ~t. Therefore Gen(~t, ~q) must be unsatisfiable, and
so C(~t) = 0.

Thus C(~p) is a monotone real formula satisfying the assumptions of Corollary 16, therefore it
has to be of size 2Ω(nǫ). Note that Theorem 2 gives no information about the behavior of C(~t) in
the case where Gen(~t, ~q) and Col(~t, ~r) are both unsatisfiable, thus we need Corollary 16 in precisely
the general form in which it is stated. From the size bounds in Theorem 2 we now obtain:
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Theorem 18. Every tree-like CP refutation of the clauses Gen(~p, ~q) ∪ Col(~p,~r) has to be of size
2Ω(nǫ), for some ǫ > 0.

On the other hand, there are polynomial size dag-like resolution refutations of these clauses.

Theorem 19. There are (dag-like) resolution refutations of size nO(1) of the clauses Gen(~p, ~q) ∪
Col(~p,~r).

Proof. First we resolve clauses (9) and (12) to get

q̄d,j,c ∨ r̄c (15)

for 1 ≤ j ≤ d and 1 ≤ c ≤ n.
Now we want to derive q̄i,j,c ∨ r̄c for every (i, j) ∈ Pyrd and 1 ≤ c ≤ n, by induction on i

downward from d to 1. The induction base is just (15).
Now by induction we have

q̄i+1,j,a ∨ r̄a and q̄i+1,j+1,b ∨ r̄b ,

we resolve them against (14) to get q̄i+1,j,a ∨ q̄i+1,j+1,b ∨ p̄a,b,c ∨ r̄c for 1 ≤ a, b, c ≤ n and then resolve
them against (11) and get

q̄i+1,j,a ∨ q̄i+1,j+1,b ∨ q̄i,j,c ∨ r̄c

for every 1 ≤ a, b ≤ n. All of these are then resolved against two instances of (8), and we get the
desired q̄i,j,c ∨ r̄c for every 1 ≤ c ≤ n.

Finally, we have in particular q̄1,1,a ∨ r̄a for every 1 ≤ c ≤ n. We resolve them with (13) and get
q̄1,1,a ∨ p̄a,a,n for every 1 ≤ a ≤ n. These are resolved with (10) to get q̄1,1,a for every 1 ≤ a ≤ n.
Finally, this clause is resolved with another instance of (10) (the one with i = j = 1) to get the
empty clause.

It is easy to check that the above refutation is a negative resolution refutation. The following
corollary is an easy consequence of the above theorems and known simulation results.

Corollary 20. The clauses Gen(~p, ~q) ∪ Col(~p,~r) exponentially separate tree-like resolution from
dag-like resolution, if fact it separates tree-like resolution from dag-like negative resolution. They
also separate tree-like Cutting Planes from dag-like Cutting Planes.

The resolution refutation of Gen(~p, ~q) ∪ Col(~p,~r) that appears in the proof of Theorem 19 is
not regular. We do not know whether Gen(~p, ~q) ∪ Col(~p,~r) has polynomial size regular resolution
refutations. To obtain a separation between tree-like resolution and regular resolution we will
modify the clauses Col(~p,~r).

4.1 Separation of Tree-like CP from Regular Resolution

The clauses Col(~p,~r) are modified (and the modification called RCol(~p,~r)), so that Gen(~p, ~q) ∪
RCol(~p,~r) allow small regular resolutions, but in such a way that the lower bound proof still applies.
We replace the variables ra by ra,i,D for a ∈ [n], 1 ≤ i ≤ d and D ∈ {L,R}, giving the coloring of
element a, with auxiliary indices i being a row in the pyramid and D distinguishing whether an
element is used as a left or right predecessor in the generation process.
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The set RCol(~p,~r) is defined as follows:

p̄1,1,a ∨ r̄a,d,D for a ∈ [n] and D ∈ {L,R} (16)

p̄a,a,n ∨ ra,1,D for a ∈ [n] and D ∈ {L,R} (17)

ra,i+1,L ∨ rb,i+1,R ∨ p̄a,b,c ∨ r̄c,i,D for i < d, a, b, c ∈ [n] and D ∈ {L,R} (18)

r̄a,i,D ∨ ra,i,D̄ for 1 ≤ i ≤ d and D ∈ {L,R} (19)

r̄a,i,D ∨ ra,j,D for 1 ≤ i, j ≤ d and D ∈ {L,R} (20)

Due to the clauses (19) and (20), the variables ra,i,D are equivalent for all values of the auxiliary
indices i,D. Hence a satisfying assignment for RCol(~p,~r) still codes a coloring of [n] such that
elements a with 1, 1 ⊢ a are colored 0, the elements b with b, b ⊢ n are colored 1, and the 0-colored
elements are closed under generation. Hence if RCol(~t, ~r) is satisfiable, then Gen(~t) = 0.

Hence any interpolant for the clauses Gen(~p, ~q)∪RCol(~p,~r) satisfies the assumptions of Corol-
lary 16, and we can conclude

Theorem 21. Tree-like CP refutations of the clauses Gen(~p, ~q) ∪ RCol(~p,~r) have to be of size
2Ω(nǫ).

On the other hand, we have the following upper bound on (dag-like) regular resolution refuta-
tions of these clauses:

Theorem 22. There are (dag-like) regular resolution refutations of the clauses Gen(~p, ~q)∪RCol(~p,~r)
of size nO(1).

Proof. First we resolve clauses (9) and (16) to get

q̄d,j,a ∨ r̄a,d,D (21)

for 1 ≤ j ≤ d, 1 ≤ a ≤ n and D ∈ {L,R}. Next we resolve (10) and (17) to get

q̄1,1,a ∨ ra,1,D (22)

for 1 ≤ a ≤ n and D ∈ {L,R}. Finally, from (11) and (18) we obtain

q̄i+1,j,a ∨ q̄i+1,j+1,b ∨ q̄i,j,c ∨ ra,i+1,L ∨ rb,i+1,R ∨ r̄c,i,D (23)

for 1 ≤ j ≤ i < d, 1 ≤ a, b, c ≤ n and D ∈ {L,R}.
Now we want to derive q̄i,j,a ∨ r̄a,i,D for every (i, j) ∈ Pyrd, 1 ≤ a ≤ n and D ∈ {L,R}, by

induction on i downward from d to 1. The induction base is just (21).
For the inductive step, resolve (23) against the clauses

q̄i+1,j,a ∨ r̄a,i+1,L and q̄i+1,j+1,b ∨ r̄b,i+1,R ,

which we have by induction, to give

q̄i+1,j,a ∨ q̄i+1,j+1,b ∨ q̄i,j,c ∨ r̄c,i,D

for every 1 ≤ a, b ≤ n. All of these are then resolved against two instances of (8), and we get the
desired q̄i,j,c ∨ r̄c,i,D.

Finally, we have in particular q̄1,1,a ∨ r̄a,1,L, which we resolve against (22) to get q̄1,1,a for every
a ≤ n. From these and an instance of(8) we get the empty clause.
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Note that the refutation given in the proof of Theorem 22 is actually a ordered refutation: It
respects the following elimination order

p1,1,1 . . . pn,n,n

r1,d,L r1,d,R . . . rn,d,L rn,d,R

q1,d,1 . . . q1,d,n . . . qd,d,1 . . . qd,d,n

r1,d−1,L . . . rn,d−1,R q1,d−1,1 . . . qd−1,d−1,n

...

r1,1,L r1,1,R q1,1,1 . . . q1,1,n .

Corollary 23. The clauses Gen(~p, ~q) ∪ RCol(~p,~r) exponentially separate tree-like resolution from
ordered resolution, therefore they also separate exponentially tree-like resolution from regular reso-
lution.

5 Lower Bound for Ordered Resolution

Goerdt [13] showed that ordered resolution is strictly weaker than unrestricted resolution, by giving
a superpolynomial lower bound (of the order Ω(nlog log n)) for ordered resolutions of a certain family
of clauses, which on the other hand has polynomial size unrestricted resolution refutations. In this
section we improve this separation to an exponential one, in fact, we give an exponential separation
of ordered resolution from negative resolution.

To simplify the exposition, we apply the method of [13] to a set of clauses SPn,m expressing a
combinatorial principle that we call the String-of-Pearls principle: From a bag of m pearls, which
are colored red and blue, n pearls are chosen and placed on a string. The string-of-pearls principle
SPn,m says that, if the first pearl is red and the last one is blue, then there must be a blue pearl
next to a red pearl somewhere on the string.

SPn,m is given by an unsatisfiable set of clauses in variables pi,j and qj for i ∈ [n] and j ∈ [m],
where pi,j is intended to say that pearl j is at position i on the string, and qj means that pearl j
is colored blue. The clauses forming SPn,m are:

m
∨

j=1

pi,j i ∈ [n] (24)

p̄i,j ∨ p̄i,j′ i ∈ [n], j, j′ ∈ [m], j 6= j′ (25)

p̄i,j ∨ p̄i′,j i, i′ ∈ [n], j ∈ [m], i 6= i′ (26)

These first three sets of clauses express that there is a unique pearl at each position.

p̄1,j′ ∨ q̄j′ j′ ∈ [m] (27)

p̄n,j ∨ qj j ∈ [m] (28)

p̄i,j ∨ p̄(i+1),j′ ∨ qj ∨ q̄j′ 1 ≤ i < n, j, j′ ∈ [m], j 6= j′ (29)

These last three sets of clauses express that the first pearl is red, the last one is blue, and that
a pearl sitting next to a red pearl is also colored red. The clauses SPn,m are a modified and
simplified version of the clauses related to the st-connectivity problem that were introduced by
Clote and Setzer [8].
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Proposition 24. The clauses SPn,m have negative resolution refutations of size O(nm2).

Proof. For every i ∈ [n], we will derive the clauses p̄i,j ∨ q̄j for j ∈ [m] from SPn,m by a negative
resolution derivation. For i = 1, these are the clauses (27) from SPn,m. Inductively, assume we
have derived p̄i,j′ ∨ q̄j′ for j′ ∈ [m], and we want to derive p̄(i+1),j ∨ q̄j from these.

Consider the clauses (29) of the form p̄i,j′ ∨ p̄(i+1),j ∨ qj′ ∨ q̄j for j′ ∈ [m]. Using the inductive
assumption, we derive from these the clauses p̄i,j′ ∨ p̄(i+1),j ∨ q̄j for j′ ∈ [m]. Note that these are
negative clauses.

By a derivation of length m, we obtain p̄(i+1),j ∨ q̄j from these and the clause
∨

j′∈[m] pi,j′ from
SPn,m. The whole derivation is of length O(m), and we need m of them, giving a total length of
O(m2) for the induction step.

We end up with a derivation of the clauses p̄n,j ∨ q̄j for j ∈ [m] of length O(nm2). In another m
steps we resolve these with the initial clauses (28), obtaining the singleton clauses p̄n,j for j ∈ [m].
Finally we derive a contradiction from these and the clauses

∨

j∈[m] pn,j.

The above refutation of SPn,m is not ordered, since it is not even regular: the variables qj for
every pearl j are eliminated at every stage of the induction. Nevertheless, we are unable to show
that there are no short ordered refutations of SPn,m. In order to obtain a lower bound for ordered
resolution refutations, we shall modify the clauses SPn,m. The lower bound is then proved by a
bottleneck counting argument similar to that used in [13], which is based on the original argument
of Haken [16]. Note that the clauses (24) - (26) are similar to the clauses expressing the Pigeonhole
Principle, which makes the bottleneck counting technique applicable in our situation.

We call the pearls numbered 1 through n
4 (which we assume to be integer, for simplicity) the

special pearls. The positions 1 to n
2 on the string are called the left half, and the positions n

2 + 1 to
n the right half of the string.

For each special pearl j placed on the string, an associated position ı̂ = ı̂(j) is defined, depending
on where on the string j is placed. If j is placed in the left half, then ı̂ is in the right half, say
ı̂ = n

2 + 2j − 1 for definiteness, and if j is placed in the right half, then ı̂ is in the left half, say
ı̂ = 2j.

The set SP ′
n,m is obtained from SPn,m by adding additional literals to those clauses that restrict

the coloring of the special pearls placed on the string. First, the clauses (27) and (29) for 1 ≤ i < n
2 ,

where j′ ≤ n
4 is special, are replaced by m clauses each, namely

p̄ı̂,ℓ ∨ p̄1,j′ ∨ q̄j′ (30)

p̄ı̂,ℓ ∨ p̄i,j ∨ p̄(i+1),j′ ∨ qj ∨ q̄j′ (31)

for every ℓ ∈ [m], where ı̂ := n
2 + 2j′ − 1, since j′ is placed in the left half. Similarly, the clauses

(28) and (29) for n
2 < i < n and special j ≤ n

4 are replaced by

p̄ı̂,ℓ ∨ p̄n,j ∨ qj (32)

p̄ı̂,ℓ ∨ p̄i,j ∨ p̄(i+1),j′ ∨ qj ∨ q̄j′ (33)

for every ℓ ∈ [m], where now ı̂ := 2j, since j is placed in the right half. All other clauses remain
unchanged. The modified clauses SP ′

n,m do not have an intuitive combinatorial interpretation
different from the meaning of the original clauses SPn,m. The added literals only serve to make the
clauses hard for ordered refutations. The idea is that, for the clauses (30)-(33) to be used as one
would use the original (27)-(29) in the natural short, inductive proof above, the additional literals
p̄ı̂,ℓ have to be removed first. The positions ı̂ are chosen in such a way that this cannot be done in
a manner consistent with a global ordering of the variables.
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Theorem 25. The clauses SP ′
n,m have negative resolution refutations of size O(nm2).

Proof. We modify the refutation of SPn,m given above for the modified clauses SP ′
n,m. First, note

that the original clauses (27) can be obtained from (30) by a negative derivation of length m.
Next, we modify those places in the inductive step where the clauses (29) are used that have

been modified. First, we resolve the modified clauses (31) resp. (33) with the inductive assumption,
yielding the negative clauses

p̄ı̂,ℓ ∨ p̄i,j ∨ p̄(i+1),j′ ∨ q̄j′

for ℓ ∈ [m]. These are then resolved with the clause
∨m

j=1 pı̂,j, after which we can continue as in
the original refutation.

In the places where the clauses (28) are used in the original refutation, we first resolve (32) with
the clauses p̄n,j ∨ q̄j, yielding p̄ı̂,ℓ ∨ p̄n,j, which can be resolved with

∨m
j=1 pı̂,j to get the singleton

clauses p̄n,j as in the original refutation.

In particular, there are polynomial size unrestricted resolution refutations of the clauses SP ′
n,m.

The next theorem gives a lower bound for ordered resolution refutations of these clauses.

Theorem 26. For sufficiently large n and m ≥ 9
8n, every ordered resolution refutation of the

clauses SP ′
n,m contains at least 2

n
8
(log n−5) clauses.

Proof. For sake of simplicity, let n be divisible by 8, say n = 8k. Let N := nm + m be the number
of variables, and let an ordering x1, x2, . . . , xN of the variables be given, i.e., each xν is one of the
variables pi,j or qj. Let R be a ordered resolution refutation of SP ′

n,m respecting this elimination
ordering, i.e., on every path through R the variables are eliminated in the prescribed order. We
shall show that R contains at least k! different clauses, which is at least 2

n
8
(log n−5) for large n.

For a position i ∈ [n] and ν ≤ N , let S(i, ν) be the set of special pearls j ≤ 2k = n
4 such that

pi,j is among the first ν eliminated variables, i.e.,

S(i, ν) := { j ≤ 2k : pi,j ∈ {x1, . . . , xν} } .

Let ν0 be the smallest index such that |S(i, ν0)| = k for some position i, and call this position i0.
It follows that for all i 6= i0, |S(i, ν0)| < k. In other words, i0 is the first position for which k of the
variables pi0,j with j ≤ 2k special are eliminated.

Let the elements of S(i0, ν0) be denoted by j1, . . . , jk, enumerated in increasing order for defi-
niteness. For each 1 ≤ µ ≤ k, let iµ be the position ı̂(jµ) associated to jµ when jµ is placed on the
string at position i0, i.e.,

iµ :=

{

n
2 + 2jµ − 1 if i0 ≤ n

2

2jµ if i0 > n
2

.

Further we define for the set Rµ := [2k] \ S(iµ, ν0), i.e., Rµ is the set of special pearls j with the
property that, on every path in the refutation, the variable piµ,j is eliminated only after all the
variables pi0,jκ for 1 ≤ κ ≤ k have been eliminated. Note that by the definition of ν0, |S(iµ, ν0)| < k
and therefore |Rµ| ≥ k for all 1 ≤ µ ≤ k.

Definition. A critical assignment is an assignment that satisfies all the clauses of SP ′
n,m except

for exactly one of the clauses (24). From a critical assignment α, we define the following data:
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• The unique position iα ∈ [n] such that no pearl is placed at position iα by α, i.e., α(piα,j) = 0
for every j ∈ [m]. We call iα the gap of α.

• A 1-1 mapping mα : [n] \ {iα} → [m], where for every i 6= iα, mα(i) is the pearl placed at
position i by α, i.e., the unique j ∈ [m] such that α(pi,j) = 1.

For every j ∈ [m], we refer to the value α(qj) as the color of j, where we identify the value 0 with
red and 1 with blue.

A critical assignment α is called 0-critical, if the gap is iα = i0 and mα(iµ) ∈ Rµ for each
1 ≤ µ ≤ k, and moreover

• if i0 is in the left half, then j1, . . . , jk are colored blue (i.e., α(qj1) = . . . = α(qjk
) = 1,)

• if i0 is in the right half, then j1, . . . , jk are colored red (i.e., α(qj1) = . . . = α(qjk
) = 0.)

Note that the positions i0, i1, . . . , ik and the pearls j1, . . . , jk, and thus the notion of 0-critical
assignment, only depend on the elimination order and not on the refutation R.

As in other bottleneck counting arguments, the lower bound will now be proved in two steps:
First, we show that there are many 0-critical assignments. Second, we will map each 0-critical
assignment α to a certain clause Cα in R, and then show that not too many different assignments
α can be mapped to the same clause Cα, thus there must be many of the clauses Cα.

The first goal, showing there are many 0-critical assignments, is attained with the following
claim:

Claim 27. For every choice of pairwise distinct pearls b1, . . . , bk with bµ ∈ Rµ for 1 ≤ µ ≤ k, there
is a 0-critical assignment α with mα(iµ) = bµ for 1 ≤ µ ≤ k. In particular, there are at least k!
0-critical assignments that disagree on the values mα(iµ) for 1 ≤ µ ≤ k.

Proof of Claim 27. For those positions i such that mα(i) is not defined yet, i.e., i /∈ {i0, i1, . . . , ik},
assign pearls mα(i) ∈ [m] \ {j1, . . . , jk} arbitrarily but consistently, i.e., choose an arbitrary 1-1
mapping from [n] \ {i0, i1, . . . , ik} to [m] \ {b1, . . . bk, j1, . . . , jk}. This is always possible, since by
assumption m ≥ 9k.

Finally, color those pearls that are assigned to positions to the left of the gap red, and those
that are assigned to positions to the right of the gap blue, i.e., set α(qmα(i)) = 0 for i < i0 and
α(qmα(i)) = 1 for i > i0. The pearls j1, . . . , jk are colored according to the requirement in the
definition of a 0-critical assignment.

This coloring of the pearls is well-defined even if some of the pearls b1, . . . bk are among the
j1, . . . , jk, because the positions i1, . . . , ik and i0 are in opposing halves of the string: if i0 is in
the left half, then every iµ is in the right half, and in particular, iµ > i0. Similarly, if i0 is in the
right half, then iµ < i0, so in both cases, the pearls j1, . . . , jk get the same color as b1, . . . , bk. The
remaining pearls can be colored arbitrarily.

Now we map 0-critical assignments to certain clauses in R. For a 0-critical assignment α, let
Cα be the first clause in R such that α does not satisfy Cα, and

{ j : pi0,j occurs in Cα } = [m] \ {j1, . . . , jk} .

This clause exists because α determines a path through R from the clause
∨

j∈[m] pi0,j to the empty
clause, such that α does not satisfy any clause on this path. The variables pi0,j with j ≤ 2k are
eliminated along that path, and pi0,j1, . . . pi0,jk

are the first among them in the elimination order.

21



Claim 28. Let α be a 0-critical assignment. For every 1 ≤ µ ≤ k, the literal p̄iµ,ℓµ
, where ℓµ :=

mα(iµ), occurs in Cα.

Proof of Claim 28. Let α′ be the assignment defined by α′(pi0,jµ) := 1 and α′(x) := α(x) for all
other variables x. As pi0,jµ does not occur in Cα, α′ does not satisfy Cα either.

There is exactly one clause in SP ′
n,m that is not satisfied by α′, depending on where the gap i0

is, this clause is

i0 = 1 : p̄iµ,ℓµ
∨ p̄1,jµ ∨ q̄jµ

1 < i0 ≤
n

2
: p̄iµ,ℓµ

∨ p̄i0−1,h ∨ p̄i0,jµ ∨ qh ∨ q̄jµ where h = mα(i0 − 1)

n

2
< i0 < n : p̄iµ,ℓµ

∨ p̄i0,jµ ∨ p̄i0+1,h ∨ qjµ ∨ q̄h where h = mα(i0 + 1)

i0 = n : p̄iµ,ℓµ
∨ p̄n,jµ ∨ qjµ

The requirement for the coloring of the jµ in the definition of a 0-critical assignment entails that
these clauses are not satisfied by α′, and that all other clauses are satisfied by α′.

In any case, the literal p̄iµ,ℓµ
occurs in this clause, and there is a path through R leading from

the clause in question to Cα, such that α′ does not satisfy any clause on that path. The variable
that is eliminated in the last inference on that path must be one of the pi0,jκ for 1 ≤ κ ≤ k, by
the definition of Cα. Since ℓµ ∈ Rµ, the variable piµ,ℓµ

appears after pi0,jκ in the elimination order,
by the definition of Rµ . Therefore piµ,ℓµ

cannot have been eliminated on that path, so p̄iµ,ℓµ
still

occurs in Cα.

Finally we are ready to finish the proof of the theorem. Let α, β be two 0-critical assignments
such that ℓµ := mα(iµ) 6= mβ(iµ) for some 1 ≤ µ ≤ k, so that β(piµ,ℓµ

) = 0. By Claim 28, the
literal p̄iµ,ℓµ

occurs in Cα, therefore β satisfies Cα, and hence Cβ 6= Cα.
By Claim 27, there are at least k! 0-critical assignments α that disagree on at least one of the

values mα(iµ). Thus R contains at least k! distinct clauses of the form Cα.

The following corollary is a direct consequence of Theorems 26 and 25.

Corollary 29. The clauses SP ′
n,m for m ≥ 9

8n exponentially separate ordered resolution from
unrestricted resolution and negative resolution.

A modification similar to the one that transforms SPn,m into SP ′
n,m can also be applied to the

clauses Gen(~p, ~q), yielding a set DPGen(~p, ~q). Then for the clauses DPGen(~p, ~q)∪Col(~p,~r), an ex-
ponential lower bound for ordered resolutions can be proved by the method of Theorem 26 (this was
presented in the conference version [5] of this paper). Also the negative resolution proofs of Theo-
rem 19 can be modified for these clauses. Thus the clauses DPGen(~p, ~q) ∪ Col(~p,~r) exponentially
separate ordered from negative resolution as well.

6 Open Problems

We would like to conclude by stating some open problems related to the topics of this paper.

1. For boolean circuits (monotone as well as general), circuit depth and formula size are essen-
tially the same complexity measure, as they are exponentially related by the well-known
Brent-Spira theorem. Is there an analogous theorem for monotone real circuits, i.e., is
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dR(f) = Θ(log sR(f)) for every monotone function f? This would be implied by the con-
verse to Lemma 1, i.e., dR(f) ≤ CCR(Rf ). Does this hold for every monotone function
f?

2. The separation between tree-like and dag-like resolution was recently improved to a strongly
exponential one, with a lower bound of the form 2n/ log n ([3, 4, 24]). Can we prove the same
strong separation between tree-like and dag-like CP?

3. A solution for the previous problem would follow from a strongly exponential separation of
monotone real formula size from monotone circuit size. Such a strong separation is not even
known for monotone boolean circuits.

4. Can the superpolynomial separations of regular and negative resolution from unrestricted
resolution [14, 15] be improved to exponential as well? And is there an exponential speed-up
of regular over ordered resolution?
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