A Note on Sharply Bounded Arithmetic

Jan Johannsen
Universität Erlangen-Nürnberg

January 24, 1994

Abstract

We prove some independence results for the bounded arithmetic theory R_{2}^{0}, and we define a class of functions that is shown to be an upper bound for the class of functions definable by a certain restricted class of Σ_{1}^{b}-formulae in extensions of R_{2}^{0}.

Introduction

We deal with fragments of the theory S_{2} of Bounded Arithmetic of Buss [1], and assume that the reader is familiar with this work. Just like among the fragments of Peano Arithmetic, the weak fragments below $I \Sigma_{1}$ are the most interesting ones, the bottom levels of the various hierarchies of subtheories of S_{2} leave a lot of seemingly difficult open questions. So e.g. the question whether $\Sigma_{0}^{b}-P I N D$ and $\Sigma_{0}^{b}-L I N D$ are equivalent over the BASIC axioms, or even whether S_{2}^{0} is a subtheory of T_{2}^{0}, are - to the author's knowledge - not answered yet. We know, however, from [5] that if S_{2}^{0} is included in T_{2}^{0}, then the inclusion is proper. In this paper we consider fragments slightly stronger than S_{2}^{0}, but weaker than T_{2}^{0}.

In [4], we defined the extension $S_{2^{+}}^{0}$ of S_{2}^{0}, which has the additional function symbols P (for the predecessor), - , MSP and Count, where $\operatorname{MSP}(a, i)$ is the number obtained by cutting off the last i bits of a, and $\operatorname{Count}(a)$ is the number of bits set in the binary expansion of a. The axioms of S_{2+}^{0} are the BASIC axioms of [1] together with the following axioms on the new function symbols

- $P 0=0, P(S x)=x, x>0 \rightarrow S(P x)=x$
- $x-0=x, \quad x-S y=P(x-y), \quad x \geq y \rightarrow(x-y)+y=x, \quad x<y \rightarrow x-y=0$
- $\operatorname{MSP}(x, 0)=x, \quad \operatorname{MSP}(x, S i)=\left\lfloor\frac{1}{2} M S P(x, i)\right\rfloor$
- $\operatorname{Count}(0)=0, \operatorname{Count}(2 x)=\operatorname{Count}(x), \operatorname{Count}(S(2 x))=S(\operatorname{Count}(x))$
and $\Sigma_{0}^{b}-P I N D$ (for sharply bounded formulae in the extended language). For $S_{2^{+}}^{0}$, we have the following independence results:

Theorem 1 The function $\left\lfloor\frac{1}{3} x\right\rfloor$ cannot be Σ_{1}^{b}-defined in S_{2+}^{0}. Furthermore, there are even functions in the complexity class $A C^{0}$ not Σ_{1}^{b}-definable in $S_{2^{+}}^{0}$.

Proof: We give a sketch of the proof, for details see [4]. We interpret S_{2+}^{0} in S_{2} as follows: The domain of the interpretation are the sequence numbers of sequences in which every term is positive. The empty sequence interprets 0 , and if $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ interprets a, then $\left\langle a_{1}, \ldots, a_{n}, a_{n+1}\right\rangle$ interprets $a \cdot 2^{a_{n+1}}$ if n is odd and $(a+1) \cdot 2^{a_{n+1}}-1$ if n is even. Then the interpretations of the primitive functions of $S_{2^{+}}^{0}$ are polynomial time computable and hence Σ_{1}^{b}-defined in S_{2}, and S_{2} proves the interpretation of every theorem of $S_{2^{+}}^{0}$.
Now the sequence $\langle n+1\rangle$ interprets $2^{n+1}-1$, and the interpretation of $\left\lfloor\frac{1}{3}\left(2^{n+1}-1\right)\right\rfloor$ is $\langle 1, \ldots, 1\rangle$, a sequence of length n with a sequence number greater than 2^{n}. Thus the provability of the interpretation of $\forall x \exists y y=\left\lfloor\frac{1}{3} x\right\rfloor$ in S_{2} would contradict Parikh's Theorem. The same holds if we consider the function $\left\lfloor\frac{1}{3}\left(2^{|x|}-1\right)\right\rfloor$ instead, which is easily seen to be in $A C^{0}$.

For many purposes, the LIND axioms are more convenient than the PIND axioms. Therefore let $L_{2^{+}}^{0}$ be like $S_{2^{+}}^{0}$, only with $\Sigma_{0}^{b}-P I N D$ replaced by $\Sigma_{0}^{b}-L I N D$. Then we have

Proposition $2 S_{2+}^{0}$ and L_{2+}^{0} are equivalent.
The proofs of the analogous statements (Thms. 2.6 and 2.12) in [1] can be carried out in exactly the same way in our case. To prove $L I N D$ for a formula $A(x)$ in $S_{2^{+}}^{0}$, use PIND on the formula $A(|x|)$. Similarly, to prove PIND for $B(x)$ in $L_{2^{+}}^{0}$, use LIND on x in the formula $B(\operatorname{MSP}(a,|a|-x))$.

The theory R_{2}^{0}

In [6], the theories R_{2}^{i} in the language of S_{2} augmented by - and $M S P$ were defined. R_{2}^{i} is axiomatized by the BASIC axioms, the above axioms for - and $M S P$, the extensionality axiom

$$
|a|=|b| \wedge \forall i<|a|(\operatorname{Bit}(a, i)=\operatorname{Bit}(b, i)) \rightarrow a=b,
$$

where Bit is defined by $\operatorname{Mod} 2(a):=a \div 2\left\lfloor\frac{1}{2} a\right\rfloor$ and $\operatorname{Bit}(a, i):=\operatorname{Mod} 2(\operatorname{MSP}(a, i))$, and the $\Sigma_{i}^{b}-L B I N D$ axioms

$$
A(0) \wedge \forall x\left(A\left(\left\lfloor\frac{1}{2} x\right\rfloor\right) \rightarrow A(x)\right) \rightarrow \forall x A(|x|)
$$

for every Σ_{i}^{b} formula $A(x)$. R_{2}^{1} corresponds to the complexity class $N C$, since in [6] it is shown that R_{2}^{1} is equivalent to the theory $T N C$ of $[3]$, whose Σ_{1}^{b}-definable functions are exactly those in $N C$.
We shall mainly be interested in R_{2}^{0}, since our results about S_{2+}^{0} can be applied to this theory. What is needed for this application is the following

Theorem 3 The extensionality axiom can be proved in $S_{2^{+}}^{0}$.
Proof: Let $B(x)$ be the formula

$$
\left.\left.\begin{array}{rl}
|a|=|b| \wedge \forall i \leq|a|(i & \leq x \rightarrow \operatorname{Bit}(a,|a|-i)
\end{array}\right) \operatorname{Bit}(b,|a| \dot{-} i)\right), ~=\operatorname{MSP}(a,|a|-x)=\operatorname{MSP}(b,|a| \dot{-}) .
$$

Then we can trivially prove $B(0)$ in R_{2}^{0}. Now suppose $B(x)$, and furthermore suppose

$$
\forall i \leq|a|(i \leq S x \rightarrow \operatorname{Bit}(a,|a|-i)=\operatorname{Bit}(b,|a| \doteq i))
$$

The latter formula is equivalent to the conjunction of $\forall i \leq|a|(i \leq x \rightarrow \operatorname{Bit}(a,|a|-i)=$ $\operatorname{Bit}(b,|a|-i))$ and $\operatorname{Bit}(a,|a|-S x)=\operatorname{Bit}(b,|a|-S x)$, and by the hypothesis $B(x)$, we conclude $\operatorname{MSP}(a,|a|-x)=\operatorname{MSP}(b,|a|-x)$. The following equations are immediately proved from the definition of Bit without induction:

$$
\begin{aligned}
& M S P(a,|a|-S x)=2 \cdot M S P(a,|a| \dot{-})+\operatorname{Bit}(a,|a| \dot{-} S x) \quad \text { and } \\
& M S P(b,|a|-S x)=2 \cdot M S P(b,|a| \dot{-} x)+\operatorname{Bit}(b,|a| \dot{-} S x)
\end{aligned}
$$

By the above, the terms on the right sides of these equations are equal, hence

$$
M S P(a,|a| \dot{-} S x)=M S P(b,|a| \dot{-} S x)
$$

which proves $B(S x)$. Hence $R_{2}^{0} \vdash B(x) \rightarrow B(S x)$, and by $\Sigma_{0}^{b}-L I N D$ we can conclude $B(|a|)$, which is equivalent to the extensionality axiom.

Corollary 4 The theory obtained from $S_{2^{+}}^{0}$ by omitting the function symbol Count and the axioms containing it is equivalent to R_{2}^{0}.

Proof: In [6] it was shown that R_{2}^{0} is equivalent to the theory obtained by adding to S_{2}^{0} the functions - and MSP with their defining axioms and the extensionality axiom. Clearly the function P and the axioms containing it are redundant in $S_{2^{+}}^{0}$, and since in the proof of Thm. 3 the function Count is not used, the claim follows.

By Thm. 1, we know that there are functions in the class $A C^{0}$ which are not Σ_{1}^{b} definable in $S_{2^{+}}^{0}$. Obviously, this also holds for the subsystem without the function Count, hence we have

Corollary $5 R_{2}^{0}$ cannot Σ_{1}^{b}-define every function in $A C^{0}$

The following consequence of Thm. 1 was also observed by G. Takeuti (in a letter to the author).

Theorem $6 S_{2^{+}}^{0}$ does not prove the $\Sigma_{0^{-}}^{b}$-comprehension axioms

$$
\exists y<2^{|a|} \forall i<|a|(\operatorname{Bit}(y, i)=1 \leftrightarrow A(i))
$$

for all sharply bounded formulae $A(i)$.

Proof: The theory $T^{0} A C^{0}$ defined in [2] is essentially the same as S_{2+}^{0} together with the extensionality and Σ_{0}^{b}-comprehension axioms, but in a language without Count and multiplication, which is replaced by a restricted multiplication of the form $2^{|x|} \cdot y$. Hence if the Σ_{0}^{b}-comprehension axioms could be proved in $S_{2^{+}}^{0}$, then $T^{0} A C^{0}$ would be a subtheory of S_{2+}^{0}.

But by Thm. 33 of [2], the Σ_{1}^{b}-definable functions of $T^{0} A C^{0}$ are exactly the functions in $A C^{0}$, hence every function in $A C^{0}$ would be Σ_{1}^{b}-definable in S_{2+}^{0}, contrary to Thm. 1 .

Corollary $7 R_{2}^{0}$ does not prove all Σ_{0}^{b}-comprehension axioms.

Since the class of sharply bounded formulae is closed under negation, this corollary contrasts with the fact (cf. [6]) that for $i \geq 1, R_{2}^{i}$ proves the Δ_{i}^{b}-comprehension axioms

$$
\forall i(A(i) \leftrightarrow \neg B(i)) \rightarrow \exists y<2^{|a|} \forall i<|a|(B i t(y, i)=1 \leftrightarrow A(i))
$$

for every pair of Σ_{i}^{b}-formulae $A(i)$ and $B(i)$.
The proof of Thm. 3 also shows that the extensionality axiom can be omitted from the theories $T A C^{0}$ and $T^{0} A C^{0}$ of [2] and their extensions.
$p \Sigma_{1}^{b}$-definable functions of S_{2+}^{0} and R_{2}^{0}
Following Clote and Takeuti [2], we define the class of pure Σ_{1}^{b}-formulae, or $p \Sigma_{1}^{b}$ formulae for short, as follows:

Definition: A $p \Sigma_{1}^{b}$-formula is a formula of the form

$$
\exists x_{1} \leq t_{1} \ldots \exists x_{n} \leq t_{n} A\left(x_{1}, \ldots, x_{n}\right)
$$

where $A\left(x_{1}, \ldots, x_{n}\right)$ is sharply bounded. The notion of a $p \Sigma_{1}^{b}$-definable function in a theory T is defined analogous to that of a function being Σ_{1}^{b}-definable in T.

Note that Σ_{1}^{b}-replacement implies that every Σ_{1}^{b}-formula is equivalent to a $p \Sigma_{1}^{b}$-formula. In particular, every predicate definable in the standard model by a Σ_{1}^{b}-formula can also be defined by a $p \Sigma_{1}^{b}$-formula. We expect that the class of $p \Sigma_{1}^{b}$-definable functions in $S_{2^{+}}^{0}$ and R_{2}^{0} does not differ much from the class of Σ_{1}^{b}-definable functions, although we suspect that Σ_{1}^{b}-replacement cannot be proved in $S_{2^{+}}^{0}$. Evidence for this is supported by the fact that $S_{2^{+}}^{0}$ does not prove the following weak form of Σ_{1}^{b}-replacement

$$
\forall x<|a| \exists y \leq 1 B(x, y) \rightarrow \exists y<2^{|a|} \forall i<|a| B(i, \operatorname{Bit}(y, i))
$$

for all sharply bounded $B(x, y)$, since it implies Σ_{0}^{b}-comprehension: to prove the comprehension axiom for a sharply bounded formula $A(x)$, let $B(x, y): \leftrightarrow(y=1 \leftrightarrow A(x))$ in the above schema ${ }^{1}$.

Definition: Let f_{1}, \ldots, f_{k} be some functions. The class $\mathcal{C}\left[f_{1}, \ldots, f_{k}\right]$ is the smallest class of functions containing

$$
c_{0}^{(0)}, c_{0}^{(1)}, S, \pi_{i}^{(k)},+, \cdot,-,\left\lfloor\frac{1}{2} \cdot\right\rfloor,|\cdot|, \#, M S P \text { and } f_{1}, \ldots, f_{k}
$$

where $c_{0}^{(i)}$ is the i-ary constant zero, and $\pi_{i}^{(k)}\left(x_{1}, \ldots, x_{k}\right)=x_{i}$, and closed under composition and sharply bounded minimization, i.e. if g is in $\mathcal{C}\left[f_{1}, \ldots, f_{k}\right]$, then the function

$$
\mu x<|a|(f(x, \underline{b})=0):= \begin{cases}\text { the least } x \text { with } f(x, \underline{b})=0 & \text { if } \exists x<|a| f(x, \underline{b})=0 \\ |a| & \text { else }\end{cases}
$$

is also in $\mathcal{C}\left[f_{1}, \ldots, f_{k}\right]$. If $k=0$, the resulting class is simply called \mathcal{C}.
The class $\mathcal{C}[$ Count $]$ is properly contained in the complexity class $N C^{1}=A \log T I M E$, and even in the probably smaller class $T C^{0}$. Furthermore, if in the definition of \mathcal{C} multiplication would be removed from the set of initial functions, then the resulting class would be a proper subclass of $A C^{0}$. But even with multiplication and the function Count, we do not obtain all of $A C^{0}$, i.e. the difference $A C^{0} \backslash \mathcal{C}[$ Count $]$ is non-empty. This can be proved like Thm. 1 by the method of [4]. Therefore we consider the classes $\mathcal{C}\left[f_{1}, \ldots, f_{k}\right]$ as being very small.
We shall show that the $p \Sigma_{1}^{b}$-definable functions of R_{2}^{0} are all in \mathcal{C}, and the $p \Sigma_{1}^{b}$-definable functions of $S_{2^{+}}^{0}$ are all in $\mathcal{C}[$ Count $]$. Before we can do this, a little bootstrapping of the classes $\mathcal{C}\left[f_{1}, \ldots, f_{k}\right]$ is needed. As usual, we say that a predicate A is in $\mathcal{C}\left[f_{1}, \ldots, f_{k}\right]$ if its characteristic function χ_{A} is.

Proposition 8 The ordering relation \leq is in $\mathcal{C}\left[f_{1}, \ldots, f_{k}\right]$, and the class of predicates in $\mathcal{C}\left[f_{1}, \ldots, f_{k}\right]$ is closed under boolean operations and sharply bounded quantification. Finally, $\mathcal{C}\left[f_{1}, \ldots, f_{k}\right]$ is closed under definition by cases.

[^0]Proof: Define $\overline{g g}(x):=1 \dot{-x}$, then $\chi_{\leq}(x, y):=\overline{s g}(x-y)$. Furthermore, $\overline{s g}$ yields the closure under negation, and closure under conjunction is simply obtained by multiplying the characteristic functions. For closure under quantification, simply note that

$$
\forall x \leq|t| A(x) \quad \Leftrightarrow \quad \mu x<|t|+1 \neg A(x)=|t| .
$$

Finally define the function $f(x)=$ if $A(x)$ then $g_{1}(x)$ else $g_{2}(x)$ by

$$
f(x):=\chi_{A}(x) \cdot g_{1}(x)+\chi_{\neg A}(x) \cdot g_{2}(x) .
$$

By Corollary 4 above, we can think of R_{2}^{0} as the fragment of S_{2+}^{0} without Count, axiomatized in a sequent calculus like defined in [1, Ch. 4] with the $\Sigma_{0}^{b}-L I N D$ rule, and of S_{2+}^{0} as the extension $R_{2}^{0}[$ Count $]$. In general, let $R_{2}^{0}\left[f_{1}, \ldots, f_{k}\right]$ be R_{2}^{0} extended by the function symbols f_{1}, \ldots, f_{k} with some quantifier-free axioms uniquely specifying them in the standard model, and LIND for sharply bounded formulae in the extended language.

By a standard proof theoretic argument, we can assume that every formula in a proof of $\exists y \leq t A(a, y)$ with A a $p \Sigma_{1}^{b}$-formula is $p \Sigma_{1}^{b}$. Therefore our intended result follows from the following witnessing theorem for $p \Sigma_{1}^{b}$-formulae:

Theorem 9 Let $C_{i}(\underline{a})$ be the $p \Sigma_{1}^{b}$-formula

$$
\exists x_{i 1} \leq t_{i 1} \ldots \exists x_{i k_{i}} \leq t_{i k_{i}} A_{i}\left(\underline{x_{i}}, \underline{a}\right),
$$

where $\underline{x_{i}}$ denotes the sequence $x_{i 1}, \ldots, x_{i k_{i}}$, and let $D_{j}(\underline{a})$ be the $p \Sigma_{1}^{b}$-formula

$$
\exists y_{j 1} \leq s_{j 1} \ldots \exists y_{j \ell_{j}} \leq s_{j \ell_{j}} B_{j}\left(\underline{y_{j}}, \underline{a}\right),
$$

and let $R_{2}^{0}\left[f_{1}, \ldots, f_{k}\right]$ prove the following sequent

$$
C_{1}(\underline{a}), \ldots, C_{n}(\underline{a}) \Longrightarrow D_{1}(\underline{a}), \ldots, D_{m}(\underline{a})
$$

where the formulae A_{i}, B_{j} are sharply bounded, and all the free variables in the sequent are among the \underline{a}. Then there are functions $g_{i j}, 1 \leq i \leq m, 1 \leq j \leq \ell_{i}$ in $\mathcal{C}\left[f_{1}, \ldots, f_{k}\right]$ such that

$$
\begin{aligned}
& b_{11} \leq t_{11}, \ldots, b_{1 k_{1}} \leq t_{1 k_{1}}, A_{1}\left(\underline{b_{1}}, \underline{a}\right), \ldots, b_{m 1} \leq t_{n 1}, \ldots, b_{n k_{n}} \leq t_{n k_{n}}, A_{n}\left(\underline{b_{n}}, \underline{a}\right) \\
& \Longrightarrow \quad g_{11}(\underline{b}, \underline{a}) \leq s_{11} \wedge \ldots \wedge g_{1 \ell_{1}}(\underline{b}, \underline{a}) \leq s_{1 \ell_{1}} \wedge B_{1}\left(g_{11}(\underline{b}, \underline{a}), \ldots, g_{1 \ell_{1}}(\underline{b}, \underline{a}), \underline{a}\right), \ldots \\
& \quad \ldots, g_{m 1}(\underline{b}, \underline{a}) \leq s_{m 1} \wedge \ldots \wedge g_{m \ell_{m}}(\underline{b}, \underline{a}) \leq s_{m \ell_{m}} \wedge B_{m}\left(g_{m 1}(\underline{b}, \underline{a}), \ldots, g_{m \ell_{m}}(\underline{b}, \underline{a}), \underline{a}\right)
\end{aligned}
$$

is satisfied in the standard model, where \underline{b} denotes the sequence of all the variables $b_{i j}$.

Proof: This is an adaption of the proof of Thm. 24 in [2], by induction on the length of a proof of the sequent from the theorem, which we abbreviate $\Gamma \Longrightarrow \Delta$.

If $\Gamma \Longrightarrow \Delta$ is an initial sequent, then there is nothing to prove since we assumed that all the axioms are quantifier-free. Otherwise, we distinguish cases dependent on the last inference of a proof of $\Gamma \Longrightarrow \Delta$. Most cases are straightforward, the only nontrivial ones being ($\exists \leq$:right), (Contraction:right), (Cut) and $\Sigma_{0}^{b}-L I N D$. We shall in fact treat only simple cases of these inferences which show the principal ideas, which would be hidden behind technical details in a treatment of the general cases.

So let the last inference in the proof be ($\exists \leq$:right) of the form

$$
\frac{\exists x \leq s_{1} A(\underline{a}, x) \Longrightarrow \exists y \leq s_{2} B(\underline{a}, y, t(\underline{a}))}{t(\underline{a}) \leq u, \exists x \leq s_{1} A(\underline{a}, x) \Longrightarrow \exists z \leq u \exists y \leq s_{2} B(\underline{a}, y, z)} .
$$

By the induction hypothesis we have a function g in $\mathcal{C}\left[f_{1}, \ldots, f_{k}\right]$ such that

$$
b \leq s_{1}, A(\underline{a}, b) \Longrightarrow g(\underline{a}, b) \leq s_{2} \wedge B(\underline{a}, g(\underline{a}, b), t(\underline{a}))
$$

is true. Then we can simply define the function $h(\underline{a}, b):=t(\underline{a})$, since every term in the language of $R_{2}^{0}\left[f_{1}, \ldots, f_{k}\right]$ is in $\mathcal{C}\left[f_{1}, \ldots, f_{k}\right]$, and obtain

$$
t(\underline{a}) \leq u, b \leq s_{1}, A(\underline{a}, b) \Longrightarrow h(\underline{a}, b) \leq u \wedge g(\underline{a}, b) \leq s_{2} \wedge B(\underline{a}, g(\underline{a}, b), h(\underline{a}, b)) .
$$

Now let the last inference be a (Contraction:right), which we assume for sake of simplicity to look like

$$
\frac{\exists x \leq s A(\underline{a}, x) \Longrightarrow \exists y \leq t B(\underline{a}, y), \exists y \leq t B(\underline{a}, y)}{\exists x \leq s A(\underline{a}, x) \Longrightarrow \exists y \leq t B(\underline{a}, y)} .
$$

By the induction hypothesis, there are functions g_{1} and g_{2} in $\mathcal{C}\left[f_{1}, \ldots, f_{k}\right]$ such that

$$
b \leq s, A(\underline{a}, b) \Longrightarrow g_{1}(\underline{a}, b) \leq t \wedge B\left(\underline{a}, g_{1}(\underline{a}, b)\right), g_{2}(\underline{a}, b) \leq t \wedge B\left(\underline{a}, g_{2}(\underline{a}, b)\right)
$$

is true. Define the function g by

$$
g(\underline{a}, b):=\left\{\begin{array}{ll}
g_{1}(\underline{a}, b) & \text { if } g_{1}(\underline{a}, b) \leq t \wedge B\left(\underline{a}, g_{1}(\underline{a}, t)\right) \\
g_{2}(\underline{a}, b) & \text { else }
\end{array} .\right.
$$

By Prop. $8, g$ is in $\mathcal{C}\left[f_{1}, \ldots, f_{k}\right]$, and obviously we have

$$
b \leq s, A(\underline{a}, b) \Rightarrow g(\underline{a}, b) \leq t \wedge B(\underline{a}, g(\underline{a}, t)) .
$$

Now let the last inference be a (Cut), which we assume to look like

$$
\frac{\exists x \leq t A(\underline{a}, x) \Longrightarrow \exists y \leq s B(\underline{a}, y) \quad \exists y \leq s B(\underline{a}, y) \Longrightarrow \exists z \leq u C(\underline{a}, z)}{\exists x \leq t A(\underline{a}, x) \Longrightarrow \exists z \leq u C(\underline{a}, z)}
$$

By the induction hypothesis, there are functions g_{1} and g_{2} in $\mathcal{C}\left[f_{1}, \ldots, f_{k}\right]$ such that

$$
\begin{gathered}
b \leq t, A(\underline{a}, b) \Longrightarrow g_{1}(\underline{a}, b) \leq s \wedge B\left(\underline{a}, g_{1}(\underline{a}, b)\right) \quad \text { and } \\
c \leq s, B(\underline{a}, c) \Longrightarrow g_{2}(\underline{a}, c) \leq u \wedge C\left(\underline{a}, g_{2}(\underline{a}, c)\right)
\end{gathered}
$$

are true. Therefore we have

$$
b \leq t, A(\underline{a}, b) \Longrightarrow g_{2}\left(\underline{a}, g_{1}(\underline{a}, b)\right) \leq u \wedge C\left(\underline{a}, g_{2}\left(\underline{a}, g_{1}(\underline{a}, b)\right)\right) .
$$

Finally, let the last inference be a $\Sigma_{0}^{b}-L I N D$ of the form

$$
\frac{\exists x \leq s B(\underline{a}, x), A(\underline{a}, b) \Longrightarrow A(\underline{a}, S b), \exists y \leq t C(\underline{a}, y)}{\exists x \leq s B(\underline{a}, x), A(\underline{a}, 0) \Longrightarrow A(\underline{a},|c|), \exists y \leq t C(\underline{a}, y)},
$$

then by the induction hypothesis we have a function g in $\mathcal{C}\left[f_{1}, \ldots, f_{k}\right]$ such that

$$
d \leq s, B(\underline{a}, d), A(\underline{a}, b) \Longrightarrow A(\underline{a}, S b), g(\underline{a}, d, b) \leq t \wedge C(\underline{a}, g(\underline{a}, d, b))
$$

is true. What we need is a function h such that

$$
d \leq s, B(\underline{a}, d), A(\underline{a}, 0) \Longrightarrow A(\underline{a},|c|), h(\underline{a}, d, c) \leq t \wedge C(\underline{a}, h(\underline{a}, d, c))
$$

is true. Define the function $h(\underline{a}, d, c):=g(\underline{a}, d, \mu x<|c| g(\underline{a}, d, x) \leq t \wedge C(\underline{a}, g(\underline{a}, d, x)))$. Then there are two cases:

- There is an $x<|c|$ with $g(\underline{a}, d, x) \leq t \wedge C(\underline{a}, g(\underline{a}, d, x))$. In this case, $h(\underline{a}, d, c) \leq$ $t \wedge C(\underline{a}, h(\underline{a}, d, c))$ is true.
- For all $x<|c|, g(\underline{a}, d, x) \leq t \wedge C(\underline{a}, g(\underline{a}, d, x))$ is false, hence by the induction hypothesis we can conclude $A(\underline{a},|c|)$ inductively from $A(\underline{a}, 0)$.

In either case, the sequent above is true.
Corollary 10 Every function $p \Sigma_{1}^{b}$-definable in $R_{2}^{0}\left[f_{1}, \ldots, f_{k}\right]$ is in $\mathcal{C}\left[f_{1}, \ldots, f_{k}\right]$.
This follows immediately from Thm. 9.
Note that the only restriction imposed on the theories $R_{2}^{0}\left[f_{1}, \ldots, f_{n}\right]$ is that the functions f_{1}, \ldots, f_{n} are axiomatized by quantifier-free axioms. Thus Thm. 9 and its corollary apply e.g. to the theories R_{k}^{0} for $k>2$, where $R_{k}^{0}:=R_{2}^{0}\left[\#_{3}, \ldots, \#_{k}\right]$ and the functions $\#_{i}$ are defined by $\#_{2}:=\#$ and $x \#_{i+1} y:=2^{|x| \#_{i}|y|}$.

References

[1] S. R. Buss. Bounded Arithmetic. Bibliopolis, Napoli, 1986.
[2] P. Clote and G. Takeuti. First order bounded arithmetic and small boolean circuit complexity classes. To appear.
[3] P. Clote and G. Takeuti. Bounded arithmetic for NC, ALogTIME, L and NL. Annals of Pure and Applied Logic, 56:73-117, 1992.
[4] J. Johannsen. On the weakness of sharply bounded polynomial induction. In G. Gottlob, A. Leitsch, and D. Mundici, editors, Computational Logic and Proof Theory, volume 713 of Lecture Notes in Computer Science, pages 223-230. Springer Verlag, 1993.
[5] G. Takeuti. Sharply bounded arithmetic and the function $a \div 1$. In Logic and Computation, volume 106 of Contemporary Mathematics, pages 281-288. American Mathematical Society, Providence, 1990.
[6] G. Takeuti. RSUV isomorphisms. In P. Clote and J. Krajiček, editors, Arithmetic, Proof Theory and Computational Complexity, volume 23 of Oxford Logic Guides, pages 364-386. Clarendon Press, Oxford, 1993.

[^0]: ${ }^{1}$ This consequence of Thm. 6 was pointed out by the referee.

