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Abstract

We prove some independence results for the bounded arithmetic theory R

0

2

, and

we de�ne a class of functions that is shown to be an upper bound for the class of

functions de�nable by a certain restricted class of �

b

1

-formulae in extensions of R

0

2

.

Introduction

We deal with fragments of the theory S

2

of Bounded Arithmetic of Buss [1], and

assume that the reader is familiar with this work. Just like among the fragments of

Peano Arithmetic, the weak fragments below I�

1

are the most interesting ones, the

bottom levels of the various hierarchies of subtheories of S

2

leave a lot of seemingly

di�cult open questions. So e.g. the question whether �

b

0

� PIND and �

b

0

� LIND

are equivalent over the BASIC axioms, or even whether S

0

2

is a subtheory of T

0

2

, are

| to the author's knowledge | not answered yet. We know, however, from [5] that if

S

0

2

is included in T

0

2

, then the inclusion is proper. In this paper we consider fragments

slightly stronger than S

0

2

, but weaker than T

0

2

.

In [4], we de�ned the extension S

0

2

+

of S

0

2

, which has the additional function symbols P

(for the predecessor),

:

, MSP and Count, where MSP (a; i) is the number obtained

by cutting o� the last i bits of a, and Count(a) is the number of bits set in the binary

expansion of a. The axioms of S

0

2

+

are the BASIC axioms of [1] together with the

following axioms on the new function symbols

� P0 = 0, P (Sx) = x , x > 0! S(Px) = x

� x

:

0 = x , x

:

Sy = P (x

:

y) , x � y ! (x

:

y)+y = x , x < y ! x

:

y = 0

� MSP (x; 0) = x , MSP (x; Si) = b

1

2

MSP (x; i)c

� Count(0) = 0 , Count(2x) = Count(x) , Count(S(2x)) = S(Count(x))

1



and �

b

0

� PIND (for sharply bounded formulae in the extended language). For S

0

2

+

,

we have the following independence results:

Theorem 1 The function b

1

3

xc cannot be �

b

1

-de�ned in S

0

2

+

. Furthermore, there are

even functions in the complexity class AC

0

not �

b

1

-de�nable in S

0

2

+

.

Proof: We give a sketch of the proof, for details see [4]. We interpret S

0

2

+

in S

2

as

follows: The domain of the interpretation are the sequence numbers of sequences in

which every term is positive. The empty sequence interprets 0, and if ha

1

; : : : ; a

n

i

interprets a, then ha

1

; : : : ; a

n

; a

n+1

i interprets a � 2

a

n+1

if n is odd and (a+1) � 2

a

n+1

� 1

if n is even. Then the interpretations of the primitive functions of S

0

2

+

are polynomial

time computable and hence �

b

1

-de�ned in S

2

, and S

2

proves the interpretation of every

theorem of S

0

2

+

.

Now the sequence hn+ 1i interprets 2

n+1

� 1, and the interpretation of b

1

3

(2

n+1

� 1)c

is h1; : : : ; 1i, a sequence of length n with a sequence number greater than 2

n

. Thus

the provability of the interpretation of 8x 9y y = b

1

3

xc in S

2

would contradict Parikh's

Theorem. The same holds if we consider the function b

1

3

(2

jxj

� 1)c instead, which is

easily seen to be in AC

0

. 2

For many purposes, the LIND axioms are more convenient than the PIND axioms.

Therefore let L

0

2

+

be like S

0

2

+

, only with �

b

0

� PIND replaced by �

b

0

� LIND. Then

we have

Proposition 2 S

0

2

+

and L

0

2

+

are equivalent.

The proofs of the analogous statements (Thms. 2.6 and 2.12) in [1] can be carried out

in exactly the same way in our case. To prove LIND for a formula A(x) in S

0

2

+

, use

PIND on the formula A(jxj). Similarly, to prove PIND for B(x) in L

0

2

+

, use LIND

on x in the formula B(MSP (a; jaj

:

x)).

The theory R

0

2

In [6], the theories R

i

2

in the language of S

2

augmented by

:

and MSP were de�ned.

R

i

2

is axiomatized by the BASIC axioms, the above axioms for

:

and MSP , the

extensionality axiom

jaj = jbj ^ 8i< jaj (Bit(a; i) = Bit(b; i)) ! a = b ;

where Bit is de�ned by Mod2(a) := a

:

2b

1

2

ac and Bit(a; i) :=Mod2(MSP (a; i)), and

the �

b

i

� LBIND axioms

A(0) ^ 8x (A(b

1

2

xc)! A(x))! 8x A(jxj)

2



for every �

b

i

formula A(x). R

1

2

corresponds to the complexity class NC, since in [6] it

is shown that R

1

2

is equivalent to the theory TNC of [3], whose �

b

1

-de�nable functions

are exactly those in NC.

We shall mainly be interested in R

0

2

, since our results about S

0

2

+

can be applied to this

theory. What is needed for this application is the following

Theorem 3 The extensionality axiom can be proved in S

0

2

+

.

Proof: Let B(x) be the formula

jaj = jbj ^ 8i�jaj (i � x! Bit(a; jaj

:

i) = Bit(b; jaj

:

i))

! MSP (a; jaj

:

x) = MSP (b; jaj

:

x) :

Then we can trivially prove B(0) in R

0

2

. Now suppose B(x), and furthermore suppose

8i�jaj (i � Sx! Bit(a; jaj

:

i) = Bit(b; jaj

:

i)) :

The latter formula is equivalent to the conjunction of 8i�jaj (i � x! Bit(a; jaj

:

i) =

Bit(b; jaj

:

i)) and Bit(a; jaj

:

Sx) = Bit(b; jaj

:

Sx), and by the hypothesis B(x), we

conclude MSP (a; jaj

:

x) = MSP (b; jaj

:

x). The following equations are immediately

proved from the de�nition of Bit without induction:

MSP (a; jaj

:

Sx) = 2 �MSP (a; jaj

:

x) + Bit(a; jaj

:

Sx) and

MSP (b; jaj

:

Sx) = 2 �MSP (b; jaj

:

x) +Bit(b; jaj

:

Sx) :

By the above, the terms on the right sides of these equations are equal, hence

MSP (a; jaj

:

Sx) = MSP (b; jaj

:

Sx) ;

which proves B(Sx). Hence R

0

2

` B(x)! B(Sx), and by �

b

0

�LIND we can conclude

B(jaj), which is equivalent to the extensionality axiom. 2

Corollary 4 The theory obtained from S

0

2

+

by omitting the function symbol Count and

the axioms containing it is equivalent to R

0

2

.

Proof: In [6] it was shown that R

0

2

is equivalent to the theory obtained by adding to

S

0

2

the functions

:

and MSP with their de�ning axioms and the extensionality axiom.

Clearly the function P and the axioms containing it are redundant in S

0

2

+

, and since

in the proof of Thm. 3 the function Count is not used, the claim follows. 2

By Thm. 1, we know that there are functions in the class AC

0

which are not �

b

1

-

de�nable in S

0

2

+

. Obviously, this also holds for the subsystem without the function

Count, hence we have

3



Corollary 5 R

0

2

cannot �

b

1

-de�ne every function in AC

0

The following consequence of Thm. 1 was also observed by G. Takeuti (in a letter to

the author).

Theorem 6 S

0

2

+

does not prove the �

b

0

-comprehension axioms

9y<2

jaj

8i< jaj (Bit(y; i) = 1$ A(i))

for all sharply bounded formulae A(i).

Proof: The theory T

0

AC

0

de�ned in [2] is essentially the same as S

0

2

+

together with

the extensionality and �

b

0

-comprehension axioms, but in a language without Count

and multiplication, which is replaced by a restricted multiplication of the form 2

jxj

� y.

Hence if the �

b

0

-comprehension axioms could be proved in S

0

2

+

, then T

0

AC

0

would be

a subtheory of S

0

2

+

.

But by Thm. 33 of [2], the �

b

1

-de�nable functions of T

0

AC

0

are exactly the functions in

AC

0

, hence every function in AC

0

would be �

b

1

-de�nable in S

0

2

+

, contrary to Thm. 1. 2

Corollary 7 R

0

2

does not prove all �

b

0

-comprehension axioms.

Since the class of sharply bounded formulae is closed under negation, this corollary

contrasts with the fact (cf. [6]) that for i � 1, R

i

2

proves the �

b

i

-comprehension axioms

8i (A(i)$ :B(i))! 9y<2

jaj

8i< jaj (Bit(y; i) = 1$ A(i))

for every pair of �

b

i

-formulae A(i) and B(i).

The proof of Thm. 3 also shows that the extensionality axiom can be omitted from the

theories TAC

0

and T

0

AC

0

of [2] and their extensions.

p�

b

1

-de�nable functions of S

0

2

+

and R

0

2

Following Clote and Takeuti [2], we de�ne the class of pure �

b

1

-formulae, or p�

b

1

-

formulae for short, as follows:

De�nition: A p�

b

1

-formula is a formula of the form

9x

1

� t

1

: : :9x

n

� t

n

A(x

1

; : : : ; x

n

)

where A(x

1

; : : : ; x

n

) is sharply bounded. The notion of a p�

b

1

-de�nable function in a

theory T is de�ned analogous to that of a function being �

b

1

-de�nable in T .
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Note that �

b

1

-replacement implies that every �

b

1

-formula is equivalent to a p�

b

1

-formula.

In particular, every predicate de�nable in the standard model by a �

b

1

-formula can also

be de�ned by a p�

b

1

-formula. We expect that the class of p�

b

1

-de�nable functions in

S

0

2

+

and R

0

2

does not di�er much from the class of �

b

1

-de�nable functions, although we

suspect that �

b

1

-replacement cannot be proved in S

0

2

+

. Evidence for this is supported

by the fact that S

0

2

+

does not prove the following weak form of �

b

1

-replacement

8x< jaj 9y�1B(x; y)! 9y<2

jaj

8i< jajB(i; Bit(y; i))

for all sharply bounded B(x; y), since it implies �

b

0

-comprehension: to prove the com-

prehension axiom for a sharply bounded formula A(x), let B(x; y) :$ (y = 1$ A(x))

in the above schema

1

.

De�nition: Let f

1

; : : : ; f

k

be some functions. The class C[f

1

; : : : ; f

k

] is the smallest

class of functions containing

c

(0)

0

; c

(1)

0

; S; �

(k)

i

;+; �;

:

; b

1

2

:c; j:j;#;MSP and f

1

; : : : ; f

k

where c

(i)

0

is the i-ary constant zero, and �

(k)

i

(x

1

; : : : ; x

k

) = x

i

, and closed under com-

position and sharply bounded minimization, i.e. if g is in C[f

1

; : : : ; f

k

], then the function

�x< jaj (f(x; b) = 0) :=

(

the least x with f(x; b) = 0 if 9x< jaj f(x; b) = 0

jaj else

is also in C[f

1

; : : : ; f

k

]. If k = 0, the resulting class is simply called C.

The class C[Count] is properly contained in the complexity class NC

1

= ALogTIME,

and even in the probably smaller class TC

0

. Furthermore, if in the de�nition of C

multiplication would be removed from the set of initial functions, then the resulting

class would be a proper subclass of AC

0

. But even with multiplication and the function

Count, we do not obtain all of AC

0

, i.e. the di�erence AC

0

n C[Count] is non-empty.

This can be proved like Thm. 1 by the method of [4]. Therefore we consider the classes

C[f

1

; : : : ; f

k

] as being very small.

We shall show that the p�

b

1

-de�nable functions of R

0

2

are all in C, and the p�

b

1

-de�nable

functions of S

0

2

+

are all in C[Count]. Before we can do this, a little bootstrapping of the

classes C[f

1

; : : : ; f

k

] is needed. As usual, we say that a predicate A is in C[f

1

; : : : ; f

k

] if

its characteristic function �

A

is.

Proposition 8 The ordering relation � is in C[f

1

; : : : ; f

k

], and the class of predicates

in C[f

1

; : : : ; f

k

] is closed under boolean operations and sharply bounded quanti�cation.

Finally, C[f

1

; : : : ; f

k

] is closed under de�nition by cases.

1

This consequence of Thm. 6 was pointed out by the referee.
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Proof: De�ne sg(x) := 1

:

x, then �

�

(x; y) := sg(x

:

y). Furthermore, sg yields the

closure under negation, and closure under conjunction is simply obtained by multiplying

the characteristic functions. For closure under quanti�cation, simply note that

8x�jtj A(x) , �x< jtj+ 1 :A(x) = jtj :

Finally de�ne the function f(x) = if A(x) then g

1

(x) else g

2

(x) by

f(x) := �

A

(x) � g

1

(x) + �

:A

(x) � g

2

(x) :

By Corollary 4 above, we can think of R

0

2

as the fragment of S

0

2

+

without Count,

axiomatized in a sequent calculus like de�ned in [1, Ch. 4] with the �

b

0

� LIND rule,

and of S

0

2

+

as the extension R

0

2

[Count]. In general, let R

0

2

[f

1

; : : : ; f

k

] be R

0

2

extended

by the function symbols f

1

; : : : ; f

k

with some quanti�er-free axioms uniquely specifying

them in the standard model, and LIND for sharply bounded formulae in the extended

language.

By a standard proof theoretic argument, we can assume that every formula in a proof

of 9y � t A(a; y) with A a p�

b

1

-formula is p�

b

1

. Therefore our intended result follows

from the following witnessing theorem for p�

b

1

-formulae:

Theorem 9 Let C

i

(a) be the p�

b

1

-formula

9x

i1

� t

i1

: : :9x

ik

i

� t

ik

i

A

i

(x

i

; a) ;

where x

i

denotes the sequence x

i1

; : : : ; x

ik

i

, and let D

j

(a) be the p�

b

1

-formula

9y

j1

�s

j1

: : :9y

j`

j

�s

j`

j

B

j

(y

j

; a) ;

and let R

0

2

[f

1

; : : : ; f

k

] prove the following sequent

C

1

(a); : : : ; C

n

(a) =) D

1

(a); : : : ; D

m

(a)

where the formulae A

i

; B

j

are sharply bounded, and all the free variables in the sequent

are among the a. Then there are functions g

ij

, 1 � i � m; 1 � j � `

i

in C[f

1

; : : : ; f

k

]

such that

b

11

� t

11

; : : : ; b

1k

1

� t

1k

1

; A

1

(b

1

; a) ; : : : ; b

n1

� t

n1

; : : : ; b

nk

n

� t

nk

n

; A

n

(b

n

; a)

=) g

11

(b; a) � s

11

^ : : : ^ g

1`

1

(b; a) � s

1`

1

^B

1

(g

11

(b; a); : : : ; g

1`

1

(b; a); a) ; : : :

: : : ; g

m1

(b; a) � s

m1

^ : : : ^ g

m`

m

(b; a) � s

m`

m

^B

m

(g

m1

(b; a); : : : ; g

m`

m

(b; a); a)

is satis�ed in the standard model, where b denotes the sequence of all the variables b

ij

.
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Proof: This is an adaption of the proof of Thm. 24 in [2], by induction on the length

of a proof of the sequent from the theorem, which we abbreviate � =) �.

If � =) � is an initial sequent, then there is nothing to prove since we assumed that

all the axioms are quanti�er-free. Otherwise, we distinguish cases dependent on the last

inference of a proof of � =) �. Most cases are straightforward, the only nontrivial

ones being (9 �:right), (Contraction:right), (Cut) and �

b

0

� LIND. We shall in fact

treat only simple cases of these inferences which show the principal ideas, which would

be hidden behind technical details in a treatment of the general cases.

So let the last inference in the proof be (9 �:right) of the form

9x�s

1

A(a; x) =) 9y�s

2

B(a; y; t(a))

t(a) � u ; 9x�s

1

A(a; x) =) 9z�u 9y�s

2

B(a; y; z)

:

By the induction hypothesis we have a function g in C[f

1

; : : : ; f

k

] such that

b � s

1

; A(a; b) =) g(a; b) � s

2

^B(a; g(a; b); t(a))

is true. Then we can simply de�ne the function h(a; b) := t(a), since every term in the

language of R

0

2

[f

1

; : : : ; f

k

] is in C[f

1

; : : : ; f

k

], and obtain

t(a) � u ; b � s

1

; A(a; b) =) h(a; b) � u ^ g(a; b) � s

2

^B(a; g(a; b); h(a; b)) :

Now let the last inference be a (Contraction:right), which we assume for sake of sim-

plicity to look like

9x�s A(a; x) =) 9y� t B(a; y) ; 9y� t B(a; y)

9x�s A(a; x) =) 9y� t B(a; y)

:

By the induction hypothesis, there are functions g

1

and g

2

in C[f

1

; : : : ; f

k

] such that

b � s; A(a; b) =) g

1

(a; b) � t ^B(a; g

1

(a; b)) ; g

2

(a; b) � t ^B(a; g

2

(a; b))

is true. De�ne the function g by

g(a; b) :=

(

g

1

(a; b) if g

1

(a; b) � t ^B(a; g

1

(a; t))

g

2

(a; b) else

:

By Prop. 8, g is in C[f

1

; : : : ; f

k

], and obviously we have

b � s; A(a; b) =) g(a; b) � t ^B(a; g(a; t)) :

Now let the last inference be a (Cut), which we assume to look like

9x� t A(a; x) =) 9y�s B(a; y) 9y�s B(a; y) =) 9z�u C(a; z)

9x� t A(a; x) =) 9z�u C(a; z)

7



By the induction hypothesis, there are functions g

1

and g

2

in C[f

1

; : : : ; f

k

] such that

b � t; A(a; b) =) g

1

(a; b) � s ^B(a; g

1

(a; b)) and

c � s; B(a; c) =) g

2

(a; c) � u ^ C(a; g

2

(a; c))

are true. Therefore we have

b � t; A(a; b) =) g

2

(a; g

1

(a; b)) � u ^C(a; g

2

(a; g

1

(a; b))) :

Finally, let the last inference be a �

b

0

� LIND of the form

9x�s B(a; x) ; A(a; b) =) A(a; Sb) ; 9y� t C(a; y)

9x�s B(a; x) ; A(a; 0) =) A(a; jcj) ; 9y� t C(a; y)

;

then by the induction hypothesis we have a function g in C[f

1

; : : : ; f

k

] such that

d � s ; B(a; d) ; A(a; b) =) A(a; Sb) ; g(a; d; b)� t ^ C(a; g(a; d; b))

is true. What we need is a function h such that

d � s ; B(a; d) ; A(a; 0) =) A(a; jcj) ; h(a; d; c)� t ^ C(a; h(a; d; c))

is true. De�ne the function h(a; d; c) := g(a; d; �x< jcj g(a; d; x) � t ^ C(a; g(a; d; x))).

Then there are two cases:

� There is an x < jcj with g(a; d; x) � t ^ C(a; g(a; d; x)). In this case, h(a; d; c) �

t ^C(a; h(a; d; c)) is true.

� For all x < jcj, g(a; d; x) � t ^ C(a; g(a; d; x)) is false, hence by the induction

hypothesis we can conclude A(a; jcj) inductively from A(a; 0).

In either case, the sequent above is true. 2

Corollary 10 Every function p�

b

1

-de�nable in R

0

2

[f

1

; : : : ; f

k

] is in C[f

1

; : : : ; f

k

].

This follows immediately from Thm. 9.

Note that the only restriction imposed on the theories R

0

2

[f

1

; : : : ; f

n

] is that the func-

tions f

1

; : : : ; f

n

are axiomatized by quanti�er-free axioms. Thus Thm. 9 and its corol-

lary apply e.g. to the theories R

0

k

for k > 2, where R

0

k

:= R

0

2

[#

3

; : : : ;#

k

] and the

functions #

i

are de�ned by #

2

:= # and x#

i+1

y := 2

jxj#

i

jyj

.
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